GPON

Last updated
G.984
Gigabit-capable Passive Optical Networks (GPON)
GPON topology.png
Gigabit Passive Optical Network (GPON) topology
StatusIn force
Year started2003
Latest version(07/10)
July 2010
Organization ITU-T
Committee ITU-T Study Group 15
Related standards 10G-PON, NG-PON2, G.988
Domain Telecommunication
LicenseFreely available
Website https://www.itu.int/rec/T-REC-G.984.1

ITU-T G.984 [1] is the series of standards for implementing a gigabit-capable passive optical network (GPON). It is commonly used to implement the link to the customer (the last kilometre, or last mile) of fibre-to-the-premises (FTTP) services. [2] [3]

Contents

GPON puts requirements on the optical medium and the hardware used to access it, and defines the manner in which Ethernet frames are converted to an optical signal, as well as the parameters of that signal. The bandwidth of the single connection between the OLT (optical line termination) and the ONTs (optical network terminals) is 2.4 Gbit/s down, 1.2 Gbit/s up, or rarely symmetric 2.4 Gbit/s, [1] shared between up to 128 ONTs using a time-division multiple access (TDMA) protocol, which the standard defines. [4] GPON specifies protocols for error correction (Reed–Solomon) and encryption (AES), and defines a protocol for line control (OMCI) which includes authentication (LOID, serial number and/or password).

The exact kind of fibre cable and connectors to use is undefined. [5]

The primary optical transmitter, known as the optical line terminal (OLT), is housed within the central office of the telecommunications operator. A laser in the OLT injects photons from the central office into a glass-and-plastic fiber-optic cable that terminates at a passive optical splitter. The splitter divides the single signal from the central office into many signals that can be sent to up to 64 consumers. The number of consumers serviced by a single laser is determined by the operator's engineering criteria; operators may opt to reduce the number to 32 consumers. [6] [7] Furthermore, the operator may choose to divide the signal twice, for example, once into eight and again farther down the line. The maximum distance between the central office and the site can be 20 kilometers, however operators will normally limit it to 16 kilometers in order to maintain a high level of service.

In contrast to ADSL technology, which deteriorates as the distance between the central office and the household rises, with severe signal loss beyond 3km, all customers may enjoy high-speed network access within the 16km range of a fibre central office. [8]

The standards

The first version of GPON was ratified in 2003. [1] Since then, it has been expanded upon and revised several times. Work on the standard continues. As of July 2018, G.984.5 is currently being revised. [9] The most recent version comprises seven parts:

The GPON OMCI recommendation G.984.4 draws on G.983.2, which defines the BPON management model. However, G.984.4 removed all references to ATM. G.988 is a stand-alone OMCI recommendation and supersedes G.984.4 except for GPON specifics that are not defined in G.988. Future work on the PON management model is expected to appear only in the GPON space.

Security

Security issues in the G.984 standard series include the possibility of eavesdropping on upstream traffic, replay attacks, PLOAM messages that are not integrity protected and denial of service to other subscribers on the same link. [13]

See also

Further reading

Related Research Articles

<span class="mw-page-title-main">Wavelength-division multiplexing</span> Fiber-optic communications technology

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths of laser light. This technique enables bidirectional communications over a single strand of fiber as well as multiplication of capacity.

<span class="mw-page-title-main">Small Form-factor Pluggable</span> Modular communications interface

Small Form-factor Pluggable (SFP) is a compact, hot-pluggable network interface module format used for both telecommunication and data communications applications. An SFP interface on networking hardware is a modular slot for a media-specific transceiver, such as for a fiber-optic cable or a copper cable. The advantage of using SFPs compared to fixed interfaces is that individual ports can be equipped with different types of transceivers as required, with the majority including optical line terminals, network cards, switches and routers.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications network that uses only unpowered devices to carry signals, as opposed to electronic equipment. In practice, PONs are typically used for the last mile between Internet service providers (ISP) and their customers. In this use, a PON has a point-to-multipoint topology in which an ISP uses a single device to serve many end-user sites using a system such as 10G-PON or GPON. In this one-to-many topology, a single fiber serving many sites branches into multiple fibers through a passive splitter, and those fibers can each serve multiple sites through further splitters. The light from the ISP is divided through the splitters to reach all the customer sites, and light from the customer sites is combined into the single fiber. Many fiber ISPs prefer this system.

Optical Carrier transmission rates are a standardized set of specifications of transmission bandwidth for digital signals that can be carried on Synchronous Optical Networking (SONET) fiber optic networks. Transmission rates are defined by rate of the bitstream of the digital signal and are designated by hyphenation of the acronym OC and an integer value of the multiple of the basic unit of rate, e.g., OC-48. The base unit is 51.84 Mbit/s. Thus, the speed of optical-carrier-classified lines labeled as OC-n is n × 51.84 Mbit/s.

Fiber to the <i>x</i> Broadband network architecture term

Fiber to the x or fiber in the loop is a generic term for any broadband network architecture using optical fiber to provide all or part of the local loop used for last mile telecommunications. As fiber optic cables are able to carry much more data than copper cables, especially over long distances, copper telephone networks built in the 20th century are being replaced by fiber.

<span class="mw-page-title-main">Ethernet physical layer</span> Electrical or optical properties between network devices

The physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer. An implementation of a specific physical layer is commonly referred to as PHY.

Ethernet in the first mile (EFM) refers to using one of the Ethernet family of computer network technologies between a telecommunications company and a customer's premises. From the customer's point of view, it is their first mile, although from the access network's point of view it is known as the last mile.

40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet (100GbE) are groups of computer networking technologies for transmitting Ethernet frames at rates of 40 and 100 gigabits per second (Gbit/s), respectively. These technologies offer significantly higher speeds than 10 Gigabit Ethernet. The technology was first defined by the IEEE 802.3ba-2010 standard and later by the 802.3bg-2011, 802.3bj-2014, 802.3bm-2015, and 802.3cd-2018 standards. The first succeeding Terabit Ethernet specifications were approved in 2017.

ITU-T Recommendation G.983 is a family of recommendations that defines broadband passive optical network (BPON) for telecommunications Access networks. It originally comprised ten recommendations, G.983.1 through G.983.10, but recommendations .6–.10 were withdrawn when their content was incorporated into G.983.2. The current view is that the BPON standards are mature, and no further work will be done on them after the 2007 round. The GPON OMCI definition has been revised to stand alone, rather than citing G.983.2.

The passive optical network (PON) uses tree-like network topology. Due to the topology of PON, the transmission modes for downstream and upstream are different. For the downstream transmission, the OLT broadcasts optical signal to all the ONUs in continuous mode (CM), that is, the downstream channel always has optical data signal. One given ONU can find which frame in the CM stream is for it by reading the header of the frame. However, in the upstream channel, ONUs can not transmit optical data signal in CM. It is because that all the signals transmitted from the ONUs converge into one fiber by the power splitter, and overlap among themselves if CM is used. To solve this problem, burst mode (BM) transmission is adopted for upstream channel. The given ONU only transmits optical packet when it is allocated a time slot and it needs to transmit, and all the ONUs share the upstream channel in the time division multiple access (TDMA) mode. The phases of the BM optical packets received by the OLT are different from packet to packet, since the ONUs are not synchronized to transmit optical packet in the same phase, and the distance between OLT and given ONU are random. In order to compensate the phase variation from packet to packet, burst mode clock and data recovery (BM-CDR) is required. Such circuit can generate local clock with the frequency and phase same as the individual received optical packet in a short locking time, for example within 40 ns. Such generated local clock can in turn perform correct data decision. Above all, the clock and data recovery can be performed correctly after a short locking time.

The 10 Gbit/s Ethernet Passive Optical Network standard, better known as 10G-EPON allows computer network connections over telecommunication provider infrastructure. The standard supports two configurations: symmetric, operating at 10 Gbit/s data rate in both directions, and asymmetric, operating at 10 Gbit/s in the downstream direction and 1 Gbit/s in the upstream direction. It was ratified as IEEE 802.3av standard in 2009. EPON is a type of passive optical network, which is a point-to-multipoint network using passive fiber-optic splitters rather than powered devices for fan-out from hub to customers.

<span class="mw-page-title-main">10 Gigabit Ethernet</span> Standards for Ethernet at ten times the speed of Gigabit Ethernet

10 Gigabit Ethernet is a group of computer networking technologies for transmitting Ethernet frames at a rate of 10 gigabits per second. It was first defined by the IEEE 802.3ae-2002 standard. Unlike previous Ethernet standards, 10GbE defines only full-duplex point-to-point links which are generally connected by network switches; shared-medium CSMA/CD operation has not been carried over from the previous generations of Ethernet standards so half-duplex operation and repeater hubs do not exist in 10GbE. The first standard for faster 100 Gigabit Ethernet links was approved in 2010.

In telecommunications, radio frequency over glass (RFoG) is a deep-fiber network design in which the coax portion of the hybrid fiber coax (HFC) network is replaced by a single-fiber passive optical network (PON). Downstream and return-path transmission use different wavelengths to share the same fiber. The return-path wavelength standard is expected to be 1610 nm, but early deployments have used 1590 nm. Using 1590/1610 nm for the return path allows the fiber infrastructure to support both RFoG and a standards-based PON simultaneously, operating with 1490 nm downstream and 1310 nm return-path wavelengths.

Terabit Ethernet (TbE) is Ethernet with speeds above 100 Gigabit Ethernet. The 400 Gigabit Ethernet and 200 Gigabit Ethernet standard developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet was approved on December 6, 2017. On February 16, 2024 the 800 Gigabit Ethernet standard developed by the IEEE P802.3df Task Force was approved.

10G-PON is a 2010 computer networking standard for data links, capable of delivering shared Internet access rates up to 10 Gbit/s over existing dark fiber. This is the ITU-T's next-generation standard following on from GPON or gigabit-capable PON. Optical fibre is shared by many subscribers in a network known as FTTx in a way that centralises most of the telecommunications equipment, often displacing copper phone lines that connect premises to the phone exchange. Passive optical network (PON) architecture has become a cost-effective way to meet performance demands in access networks, and sometimes also in large optical local networks for fibre-to-the-desk.

OMCI or ITU-T Recommendation G.988 defines a management and control interface for optical network units (ONU). It comprises one recommendation:

<span class="mw-page-title-main">G.fast</span> ITU-T Recommendation

G.fast is a digital subscriber line (DSL) protocol standard for local loops shorter than 500 meters, with performance targets between 100 Mbit/s and 1 Gbit/s, depending on loop length. High speeds are only achieved over very short loops. Although G.fast was initially designed for loops shorter than 250 meters, Sckipio in early 2015 demonstrated G.fast delivering speeds over 100 Mbit/s at nearly 500 meters and the EU announced a research project.

NG-PON2, Next-Generation Passive Optical Network 2 is a 2015 telecommunications network standard for a passive optical network (PON). The standard was developed by ITU and details an architecture capable of total network throughput of 40 Gbit/s, corresponding to up to 10 Gbit/s symmetric upstream/downstream speeds available at each subscriber.

Higher Speed PON is a family of ITU-T recommendations for data links, capable of delivering shared Internet access rates up to 50 Gbit/s. Higher Speed PON is the first PON system to use digital signal processing, succeeding both single-channel XGS-PON and multi-channel NG-PON2. It provides upgrade paths for legacy PON generations such as GPON, XG-PON, XGS-PON, and 10G-EPON.

References

  1. 1 2 3 4 "G.984.1 : Gigabit-capable Passive Optical Networks (GPON): General characteristics". ITU-T. 2003–2012.
  2. "Review of Bell Fibe Internet". DSL Reports. 2018-04-12.
  3. Bode, Karl (2008-03-13). "AT&T, Verizon Get Their GPON On". DSL Reports.
  4. 1 2 "G.984.3 : Gigabit-capable Passive Optical Networks (GPON): Transmission convergence layer specification". ITU-T. 2004–2012.
  5. 1 2 "G.984.2 : Gigabit-capable Passive Optical Networks (GPON): Physical Media Dependent (PMD) layer specification". ITU-T. 2003–2008.
  6. "How does a Gigabit Passive Optical Network (GPON) work?". European Investment Bank. Retrieved 2021-06-07.
  7. "Fibre Optic Cable - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2021-06-07.
  8. "How does a Gigabit Passive Optical Network (GPON) work?". European Investment Bank. Retrieved 2021-06-07.
  9. 1 2 "G.984.5 : Gigabit-capable Passive Optical Networks (GPON): Enhancement Band". ITU-T. 2007–2018.
  10. "G.984.4 : Gigabit-capable Passive Optical Networks (GPON): ONT management and control interface (OMCI) specification". ITU-T. 2004–2010.
  11. "G.984.6 : Gigabit-capable Passive Optical Networks (GPON): Reach extension". ITU-T. 2008–2012.
  12. "G.984.7 : Gigabit-capable Passive Optical Networks (GPON): Long reach". ITU-T. July 2010.
  13. Horvath, Tomas; Malina, Lukas; Munster, Petr (October 2015). "On security in gigabit passive optical networks". 2015 International Workshop on Fiber Optics in Access Network (FOAN). IEEE. pp. 51–55. doi:10.1109/FOAN.2015.7320479. ISBN   978-1-4673-7625-9.