GPS meteorology

Last updated

GPS meteorology refers to the use of the effect of the atmosphere on the propagation of the Global Positioning System's (GPS) radio signals to derive information on the state of the (lower, neutral) atmosphere.

Contents

There are currently two main operational techniques in use in GPS meteorology: GPS limb sounding from orbit, and GPS water vapour monitoring.

Ground-based

As a result, if it is possible to determine the total atmospheric delay by GPS, one can subtract out the calculated contribution by the well-mixed "dry" gasses from the measured air pressure at the surface, and obtain a measure for the absolute water vapour content of the atmosphere, integrated from surface to space. This is also referred to as "total precipitable water vapour".

What makes it possible to determine the total atmospheric delay, is its known dependence of the zenith or elevation angle of the satellite. If is the zenith angle, the propagation path delay is proportional to . This unique signature makes it possible to solve separately for the zenith delay in GPS computations also solving for station coordinates and receiver clock delays.

Zenith

The zenith is an imaginary point directly "above" a particular location, on the imaginary celestial sphere. "Above" means in the vertical direction opposite to the apparent gravitational force at that location. The opposite direction, i.e. the direction in which gravity pulls, is toward the nadir. The zenith is the "highest" point on the celestial sphere.

Elevation Height of a geographic location above a fixed reference point

The elevation of a geographic location is its height above or below a fixed reference point, most commonly a reference geoid, a mathematical model of the Earth's sea level as an equipotential gravitational surface . The term elevation is mainly used when referring to points on the Earth's surface, while altitude or geopotential height is used for points above the surface, such as an aircraft in flight or a spacecraft in orbit, and depth is used for points below the surface.

Nowadays water vapour estimates are generated routinely in real time (latency measured in hours) by permanent geodetic GPS networks existing in many parts of the world.

Geodesy The science of the geometric shape, orientation in space, and gravitational field of Earth

Geodesy, is the Earth science of accurately measuring and understanding Earth's geometric shape, orientation in space, and gravitational field. The field also incorporates studies of how these properties change over time and equivalent measurements for other planets. Geodynamical phenomena include crustal motion, tides, and polar motion, which can be studied by designing global and national control networks, applying space and terrestrial techniques, and relying on datums and coordinate systems.

Water vapour is a very important gas for meteorological and climatological studies, because of the latent heat it carries in transport. Additionally it is a powerful greenhouse gas. The GPS technique is especially valuable because it measures absolute water vapour content or partial pressure rather than relative humidity, which corresponds to water vapour contents that are strongly dependent on the often not precisely known temperature.

Latent heat Thermodynamic phase transition energy

Latent heat is thermal energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process — usually a first-order phase transition.

Space-based

One can receive on a low flying satellite the signals from the much higher orbiting (20 000 km) GPS satellite constellation. As the low flying satellite orbits the Earth in 1.5 hours, many of the GPS satellites will "rise" and "set" during the time of the orbit. When they do, their signal will traverse the atmosphere.

A signal delay is produced which grows or decays exponentially with time, just as the atmospheric density is an exponential function of height above the Earth's surface. In fact, this so-called limb sounding technique allows us to determine the scale height, the constant describing the steepness of this atmospheric density decay. This makes the technique extremely valuable for climatological studies, as the scale height is directly related to the temperature in the upper atmosphere, where the limb sounding signals do their sensing. The technique works best in the lower stratosphere and upper troposphere; it breaks down close to the Earth surface especially in the tropics, due to water vapour extinction.

Scale height distance over which a quantity decreases by a factor of e; for a planetary atmosphere, the distance over which pressure drops by that factor

In various scientific contexts, a scale height is a distance over which a quantity decreases by a factor of e. It is usually denoted by the capital letter H.

Satellites involved in GPS limb sounding have been: METSAT, OERSTED (Danish), and several others.

See also

Related Research Articles

Satellite temperature measurements

Satellite temperature measurements are inferences of the temperature of the atmosphere at various altitudes as well as sea and land surface temperatures obtained from radiometric measurements by satellites. These measurements can be used to locate weather fronts, monitor the El Niño-Southern Oscillation, determine the strength of tropical cyclones, study urban heat islands and monitor the global climate. Wildfires, volcanos, and industrial hot spots can also be found via thermal imaging from weather satellites.

Water vapor gaseous phase of water; unlike other forms of water, water vapor is invisible

Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Unlike other forms of water, water vapor is invisible. Under typical atmospheric conditions, water vapor is continuously generated by evaporation and removed by condensation. It is less dense than air and triggers convection currents that can lead to clouds.

Climatology The scientific study of climate, defined as weather conditions averaged over a period of time

Climatology or climate science is the scientific study of climate, scientifically defined as weather conditions averaged over a period of time. This modern field of study is regarded as a branch of the atmospheric sciences and a subfield of physical geography, which is one of the Earth sciences. Climatology now includes aspects of oceanography and biogeochemistry. Basic knowledge of climate can be used within shorter term weather forecasting using analog techniques such as the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation (MJO), the North Atlantic oscillation (NAO), the Northern Annular Mode (NAM) which is also known as the Arctic oscillation (AO), the Northern Pacific (NP) Index, the Pacific decadal oscillation (PDO), and the Interdecadal Pacific Oscillation (IPO). Climate models are used for a variety of purposes from study of the dynamics of the weather and climate system to projections of future climate. Weather is known as the condition of the atmosphere over a period of time, while climate has to do with the atmospheric condition over an extended to indefinite period of time.

Atmospheric sciences The study of the atmosphere, its processes, and interactions with other systems

Atmospheric sciences are the study of the Earth's atmosphere, its processes, the effects other systems have on the atmosphere, and the effects of the atmosphere on these other systems. Meteorology includes atmospheric chemistry and atmospheric physics with a major focus on weather forecasting. Climatology is the study of atmospheric changes that define average climates and their change over time, due to both natural and anthropogenic climate variability. Aeronomy is the study of the upper layers of the atmosphere, where dissociation and ionization are important. Atmospheric science has been extended to the field of planetary science and the study of the atmospheres of the planets of the solar system.

Microwave radiometer

A microwave radiometer (MWR) is a radiometer that measures energy emitted at millimetre-to-centimetre wavelengths known as microwaves. Microwave radiometers are very sensitive receivers designed to measure thermal electromagnetic radiation emitted by atmospheric gases. They are usually equipped with multiple receiving channels in order to derive the characteristic emission spectrum of the atmosphere or extraterrestrial objects. Microwave radiometers are utilized in a variety of environmental and engineering applications, including weather forecasting, climate monitoring, radio astronomy and radio propagation studies.

Upper Atmosphere Research Satellite

The Upper Atmosphere Research Satellite (UARS) was a NASA-operated orbital observatory whose mission was to study the Earth’s atmosphere, particularly the protective ozone layer. The 5,900-kilogram (13,000 lb) satellite was deployed from Space Shuttle Discovery during the STS-48 mission on 15 September 1991. It entered Earth orbit at an operational altitude of 600 kilometers (370 mi), with an orbital inclination of 57 degrees.

Atmospheric physics The application of physics to the study of the atmosphere

Atmospheric physics is the application of physics to the study of the atmosphere. Atmospheric physicists attempt to model Earth's atmosphere and the atmospheres of the other planets using fluid flow equations, chemical models, radiation budget, and energy transfer processes in the atmosphere. In order to model weather systems, atmospheric physicists employ elements of scattering theory, wave propagation models, cloud physics, statistical mechanics and spatial statistics which are highly mathematical and related to physics. It has close links to meteorology and climatology and also covers the design and construction of instruments for studying the atmosphere and the interpretation of the data they provide, including remote sensing instruments. At the dawn of the space age and the introduction of sounding rockets, aeronomy became a subdiscipline concerning the upper layers of the atmosphere, where dissociation and ionization are important.

Gravity Recovery and Climate Experiment joint mission of NASA and the German Aerospace Center

The Gravity Recovery and Climate Experiment (GRACE) was a joint mission of NASA and the German Aerospace Center. Twin satellites took detailed measurements of Earth's gravity field anomalies from its launch in March 2002 to the end of its science mission in October 2017.

Satellite geodesy geodesy by means of artificial satellites

Satellite geodesy is geodesy by means of artificial satellites — the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

Solar irradiance power per unit area received from the Sun in the form of electromagnetic radiation

Solar irradiance (SI) is the power per unit area received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. The solar irradiance integrated over time is called solar irradiation, insolation, or solar exposure. However, insolation is often used interchangeably with irradiance in practice.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

Constellation Observing System for Meteorology, Ionosphere, and Climate

Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) is a program designed to provide advances in meteorology, ionospheric research, climatology, and space weather by using GPS satellites in conjunction with low Earth orbiting (LEO) satellites. The term "COSMIC" may refer to either the organization itself or the constellation of satellites. The constellation is a joint U.S.-Taiwanese project with major participants including the University Corporation for Atmospheric Research (UCAR), the National Science Foundation, the Naval Research Laboratory (NRL), the Air Force Research Laboratory (AFRL) on the U.S. side and the National Space Organization (NSPO) on the Taiwanese side.

Outline of Earth sciences Hierarchical outline list of articles related to Earth sciences

The following outline is provided as an overview of and topical guide to Earth science:

Tropical Rainfall Measuring Mission

The Tropical Rainfall Measuring Mission (TRMM) was a joint space mission between NASA and the Japan Aerospace Exploration Agency (JAXA) designed to monitor and study tropical rainfall. The term refers to both the mission itself and the satellite that the mission used to collect data. TRMM was part of NASA's Mission to Planet Earth, a long-term, coordinated research effort to study the Earth as a global system. The satellite was launched on November 27, 1997 from the Tanegashima Space Center in Tanegashima, Japan. TRMM operated for 17 years, including several mission extensions, before being decommissioned in April 2015. TRMM re-entered Earth's atmosphere on June 16, 2015.

MetOp

MetOp is a series of three polar orbiting meteorological satellites developed by the European Space Agency (ESA) and operated by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). The satellites form the space segment component of the overall EUMETSAT Polar System (EPS), which in turn is the European half of the EUMETSAT/NOAA Initial Joint Polar System (IJPS). The satellites carry a payload comprising 11 scientific instruments and two which support Search and Rescue services. In order to provide data continuity between MetOp and NOAA Polar Operational Satellites (POES), several instruments are carried on both fleets of satellites.

Atmospheric chemistry observational databases

Over the last two centuries many environmental chemical observations have been made from a variety of ground-based, airborne, and orbital platforms and deposited in databases. Many of these databases are publicly available. All of the instruments mentioned in this article give online public access to their data. These observations are critical in developing our understanding of the Earth's atmosphere and issues such as climate change, ozone depletion and air quality. Some of the external links provide repositories of many of these datasets in one place. For example, the Cambridge Atmospheric Chemical Database, is a large database in a uniform ASCII format. Each observation is augmented with the meteorological conditions such as the temperature, potential temperature, geopotential height, and equivalent PV latitude.

Atmospheric tides are global-scale periodic oscillations of the atmosphere. In many ways they are analogous to ocean tides. Atmospheric tides can be excited by:

Meteorological instrumentation measuring device used in meteorology

Meteorological instruments are the equipment used to sample the state of the atmosphere at a given time. Each science has its own unique sets of laboratory equipment. Meteorology, however, is a science which does not use much lab equipment but relies more on on-site observation and remote sensing equipment. In science, an observation, or observable, is an abstract idea that can be measured and for which data can be taken. Rain was one of the first quantities to be measured historically. Two other accurately measured weather-related variables are wind and humidity. Many attempts had been made prior to the 15th century to construct adequate equipment to measure atmospheric variables.

Radio occultation

Radio occultation (RO) is a remote sensing technique used for measuring the physical properties of a planetary atmosphere or ring system.

The maximum sustained wind associated with a tropical cyclone is a common indicator of the intensity of the storm. Within a mature tropical cyclone, it is found within the eyewall at a distance defined as the radius of maximum wind, or RMW. Unlike gusts, the value of these winds are determined via their sampling and averaging the sampled results over a period of time. Wind measuring has been standardized globally to reflect the winds at 10 metres (33 ft) above the Earth's surface, and the maximum sustained wind represents the highest average wind over either a one-minute (US) or ten-minute time span, anywhere within the tropical cyclone. Surface winds are highly variable due to friction between the atmosphere and the Earth's surface, as well as near hills and mountains over land.