Gaussian isoperimetric inequality

Last updated

In mathematics, the Gaussian isoperimetric inequality, proved by Boris Tsirelson and Vladimir Sudakov, [1] and later independently by Christer Borell, [2] states that among all sets of given Gaussian measure in the n-dimensional Euclidean space, half-spaces have the minimal Gaussian boundary measure.

Contents

Mathematical formulation

Let be a measurable subset of endowed with the standard Gaussian measure with the density . Denote by

the ε-extension of A. Then the Gaussian isoperimetric inequality states that

where

Proofs and generalizations

The original proofs by Sudakov, Tsirelson and Borell were based on Paul Lévy's spherical isoperimetric inequality.

Sergey Bobkov proved Bobkov's inequality, a functional generalization of the Gaussian isoperimetric inequality, proved from a certain "two point analytic inequality". [3] Bakry and Ledoux gave another proof of Bobkov's functional inequality based on the semigroup techniques which works in a much more abstract setting. [4] Later Barthe and Maurey gave yet another proof using the Brownian motion. [5]

The Gaussian isoperimetric inequality also follows from Ehrhard's inequality. [6] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Green's theorem</span> Theorem in calculus relating line and double integrals

In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.

In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

In mathematics, specifically the study of differential equations, the Picard–Lindelöf theorem gives a set of conditions under which an initial value problem has a unique solution. It is also known as Picard's existence theorem, the Cauchy–Lipschitz theorem, or the existence and uniqueness theorem.

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

In statistics, econometrics and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term ; thus the model is in the form of a stochastic difference equation. Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which consists of a system of more than one interlocking stochastic difference equation in more than one evolving random variable.

<span class="mw-page-title-main">Boris Tsirelson</span> Russian–Israeli mathematician (1950–2020)

Boris Semyonovich Tsirelson was a Russian–Israeli mathematician and Professor of Mathematics at Tel Aviv University in Israel, as well as a Wikipedia editor.

<span class="mw-page-title-main">Debye–Hückel equation</span> Electrochemical equation

The chemists Peter Debye and Erich Hückel noticed that solutions that contain ionic solutes do not behave ideally even at very low concentrations. So, while the concentration of the solutes is fundamental to the calculation of the dynamics of a solution, they theorized that an extra factor that they termed gamma is necessary to the calculation of the activities of the solution. Hence they developed the Debye–Hückel equation and Debye–Hückel limiting law. The activity is only proportional to the concentration and is altered by a factor known as the activity coefficient . This factor takes into account the interaction energy of ions in solution.

In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations. However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not ; various more-concrete ways of defining ordinals that definitely have notations are available.

In mathematics, the Crofton formula, named after Morgan Crofton (1826–1915), is a classic result of integral geometry relating the length of a curve to the expected number of times a "random" line intersects it.

In mathematics and economics, transportation theory or transport theory is a name given to the study of optimal transportation and allocation of resources. The problem was formalized by the French mathematician Gaspard Monge in 1781.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In mathematical logic and set theory, an ordinal collapsing function is a technique for defining certain recursive large countable ordinals, whose principle is to give names to certain ordinals much larger than the one being defined, perhaps even large cardinals, and then "collapse" them down to a system of notations for the sought-after ordinal. For this reason, ordinal collapsing functions are described as an impredicative manner of naming ordinals.

The Onsager–Machlup function is a function that summarizes the dynamics of a continuous stochastic process. It is used to define a probability density for a stochastic process, and it is similar to the Lagrangian of a dynamical system. It is named after Lars Onsager and Stefan Machlup who were the first to consider such probability densities.

In mathematics and probability, the Borell–TIS inequality is a result bounding the probability of a deviation of the uniform norm of a centered Gaussian stochastic process above its expected value. The result is named for Christer Borell and its independent discoverers Boris Tsirelson, Ildar Ibragimov, and Vladimir Sudakov. The inequality has been described as "the single most important tool in the study of Gaussian processes."

Phase reduction is a method used to reduce a multi-dimensional dynamical equation describing a nonlinear limit cycle oscillator into a one-dimensional phase equation. Many phenomena in our world such as chemical reactions, electric circuits, mechanical vibrations, cardiac cells, and spiking neurons are examples of rhythmic phenomena, and can be considered as nonlinear limit cycle oscillators.

Radial basis function (RBF) interpolation is an advanced method in approximation theory for constructing high-order accurate interpolants of unstructured data, possibly in high-dimensional spaces. The interpolant takes the form of a weighted sum of radial basis functions, like for example Gaussian distributions. RBF interpolation is a mesh-free method, meaning the nodes need not lie on a structured grid, and does not require the formation of a mesh. It is often spectrally accurate and stable for large numbers of nodes even in high dimensions.

Gaussian distribution on a locally compact Abelian group is a distribution on a second countable locally compact Abelian group which satisfies the conditions:

In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.

In probability theory, Bobkov's inequality is a functional isoperimetric inequality for the canonical Gaussian measure. It generalizes the Gaussian isoperimetric inequality. The equation was proven in 1997 by the Russian mathematician Sergey Bobkov.

References

  1. Sudakov, V. N.; Tsirel'son, B. S. (1978-01-01) [Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 41, pp. 14–24, 1974]. "Extremal properties of half-spaces for spherically invariant measures". Journal of Soviet Mathematics. 9 (1): 9–18. doi: 10.1007/BF01086099 . ISSN   1573-8795. S2CID   121935322.
  2. Borell, Christer (1975). "The Brunn-Minkowski Inequality in Gauss Space". Inventiones Mathematicae. 30 (2): 207–216. Bibcode:1975InMat..30..207B. doi:10.1007/BF01425510. ISSN   0020-9910. S2CID   119453532.
  3. Bobkov, S. G. (1997). "An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space". The Annals of Probability. 25 (1): 206–214. doi: 10.1214/aop/1024404285 . ISSN   0091-1798.
  4. Bakry, D.; Ledoux, M. (1996-02-01). "Lévy–Gromov's isoperimetric inequality for an infinite dimensional diffusion generator". Inventiones Mathematicae. 123 (2): 259–281. doi:10.1007/s002220050026. ISSN   1432-1297. S2CID   120433074.
  5. Barthe, F.; Maurey, B. (2000-07-01). "Some remarks on isoperimetry of Gaussian type". Annales de l'Institut Henri Poincaré B. 36 (4): 419–434. Bibcode:2000AIHPB..36..419B. doi:10.1016/S0246-0203(00)00131-X. ISSN   0246-0203.
  6. Latała, Rafał (1996). "A note on the Ehrhard inequality". Studia Mathematica. 2 (118): 169–174. doi: 10.4064/sm-118-2-169-174 . ISSN   0039-3223.
  7. Borell, Christer (2003-11-15). "The Ehrhard inequality". Comptes Rendus Mathématique. 337 (10): 663–666. doi:10.1016/j.crma.2003.09.031. ISSN   1631-073X.