Gelman-Rubin statistic

Last updated

The Gelman-Rubin statistic allows a statement about the convergence of Monte Carlo simulations.

Contents

Definition

Monte Carlo simulations (chains) are started with different initial values. The samples from the respective burn-in phases are discarded. From the samples (of the j-th simulation), the variance between the chains and the variance in the chains is estimated:

Mean value of chain j
Mean of the means of all chains
Variance of the means of the chains
Averaged variances of the individual chains across all chains

An estimate of the Gelman-Rubin statistic then results as [1]

.

When L tends to infinity and B tends to zero, R tends to 1.

A different formula is given by Vats & Knudson. [2]

Alternatives

The Geweke Diagnostic compares whether the mean of the first x percent of a chain and the mean of the last y percent of a chain match.[ citation needed ]

Literature

References

  1. Peng, Roger D. 7.4 Monitoring Convergence | Advanced Statistical Computing via bookdown.org.
  2. Vats, Dootika; Knudson, Christina (2021). "Revisiting the Gelman–Rubin Diagnostic". Statistical Science. 36 (4). arXiv: 1812.09384 . doi:10.1214/20-STS812.