Generalist Genes hypothesis

Last updated

The Generalist Genes hypothesis of learning abilities and disabilities was originally coined in an article by Plomin & Kovas (2005). [1]

The Generalist Genes hypothesis suggests that most genes associated with common learning disabilities and abilities are generalist in three ways.

The Generalist Genes hypothesis has important implications for education, cognitive sciences and molecular genetics. [2] [3] [4]

Related Research Articles

<span class="mw-page-title-main">Dyslexia</span> Specific learning disability characterized by troubles with reading

Dyslexia, previously known as word blindness, is a learning disability that affects either reading or writing. Different people are affected to different degrees. Problems may include difficulties in spelling words, reading quickly, writing words, "sounding out" words in the head, pronouncing words when reading aloud and understanding what one reads. Often these difficulties are first noticed at school. The difficulties are involuntary, and people with this disorder have a normal desire to learn. People with dyslexia have higher rates of attention deficit hyperactivity disorder (ADHD), developmental language disorders, and difficulties with numbers.

Nature versus nurture is a long-standing debate in biology and society about the relative influence on human beings of their genetic inheritance (nature) and the environmental conditions of their development (nurture). The alliterative expression "nature and nurture" in English has been in use since at least the Elizabethan period and goes back to medieval French.

The g factor is a construct developed in psychometric investigations of cognitive abilities and human intelligence. It is a variable that summarizes positive correlations among different cognitive tasks, reflecting the fact that an individual's performance on one type of cognitive task tends to be comparable to that person's performance on other kinds of cognitive tasks. The g factor typically accounts for 40 to 50 percent of the between-individual performance differences on a given cognitive test, and composite scores based on many tests are frequently regarded as estimates of individuals' standing on the g factor. The terms IQ, general intelligence, general cognitive ability, general mental ability, and simply intelligence are often used interchangeably to refer to this common core shared by cognitive tests. However, the g factor itself is a mathematical construct indicating the level of observed correlation between cognitive tasks. The measured value of this construct depends on the cognitive tasks that are used, and little is known about the underlying causes of the observed correlations.

Dyscalculia is a disability resulting in difficulty learning or comprehending arithmetic, such as difficulty in understanding numbers, learning how to manipulate numbers, performing mathematical calculations, and learning facts in mathematics. It is sometimes colloquially referred to as "math dyslexia", though this analogy is misleading as they are distinct syndromes.

A reading disability is a condition in which a person displays difficulty reading. Examples of reading disabilities include: developmental dyslexia, alexia, and hyperlexia.

Cognitive reserve is the mind's and brain's resistance to damage of the brain. The mind's resilience is evaluated behaviorally, whereas the neuropathological damage is evaluated histologically, although damage may be estimated using blood-based markers and imaging methods. There are two models that can be used when exploring the concept of "reserve": brain reserve and cognitive reserve. These terms, albeit often used interchangeably in the literature, provide a useful way of discussing the models. Using a computer analogy, brain reserve can be seen as hardware and cognitive reserve as software. All these factors are currently believed to contribute to global reserve. Cognitive reserve is commonly used to refer to both brain and cognitive reserves in the literature.

Research on the heritability of IQ inquires into the degree of variation in IQ within a population that is due to genetic variation between individuals in that population. There has been significant controversy in the academic community about the heritability of IQ since research on the issue began in the late nineteenth century. Intelligence in the normal range is a polygenic trait, meaning that it is influenced by more than one gene, and in the case of intelligence at least 500 genes. Further, explaining the similarity in IQ of closely related persons requires careful study because environmental factors may be correlated with genetic factors.

<span class="mw-page-title-main">FRAS1</span> Protein-coding gene in the species Homo sapiens

Extracellular matrix protein FRAS1 is a protein that in humans is encoded by the FRAS1 gene. This gene encodes an extracellular matrix protein that appears to function in the regulation of epidermal-basement membrane adhesion and organogenesis during development.

In multivariate quantitative genetics, a genetic correlation is the proportion of variance that two traits share due to genetic causes, the correlation between the genetic influences on a trait and the genetic influences on a different trait estimating the degree of pleiotropy or causal overlap. A genetic correlation of 0 implies that the genetic effects on one trait are independent of the other, while a correlation of 1 implies that all of the genetic influences on the two traits are identical. The bivariate genetic correlation can be generalized to inferring genetic latent variable factors across > 2 traits using factor analysis. Genetic correlation models were introduced into behavioral genetics in the 1970s–1980s.

Neurodevelopmental framework for learning, like all frameworks, is an organizing structure through which learners and learning can be understood. Intelligence theories and neuropsychology inform many of them. The framework described below is a neurodevelopmental framework for learning. The neurodevelopmental framework was developed by the All Kinds of Minds Institute in collaboration with Dr. Mel Levine and the University of North Carolina's Clinical Center for the Study of Development and Learning. It is similar to other neuropsychological frameworks, including Alexander Luria's cultural-historical psychology and psychological activity theory, but also draws from disciplines such as speech-language pathology, occupational therapy, and physical therapy. It also shares components with other frameworks, some of which are listed below. However, it does not include a general intelligence factor, since the framework is used to describe learners in terms of profiles of strengths and weaknesses, as opposed to using labels, diagnoses, or broad ability levels. This framework was also developed to link with academic skills, such as reading and writing. Implications for education are discussed below as well as the connections to and compatibilities with several major educational policy issues.

The history of dyslexia research spans from the late 1800s to the present.

Dyslexia is a reading disorder wherein an individual experiences trouble with reading. Individuals with dyslexia have normal levels of intelligence but can exhibit difficulties with spelling, reading fluency, pronunciation, "sounding out" words, writing out words, and reading comprehension. The neurological nature and underlying causes of dyslexia are an active area of research. However, some experts believe that the distinction of dyslexia as a separate reading disorder and therefore recognized disability is a topic of some controversy.

<span class="mw-page-title-main">Behavioural genetics</span> Study of genetic-environment interactions influencing behaviour

Behavioural genetics, also referred to as behaviour genetics, is a field of scientific research that uses genetic methods to investigate the nature and origins of individual differences in behaviour. While the name "behavioural genetics" connotes a focus on genetic influences, the field broadly investigates the extent to which genetic and environmental factors influence individual differences, and the development of research designs that can remove the confounding of genes and environment. Behavioural genetics was founded as a scientific discipline by Francis Galton in the late 19th century, only to be discredited through association with eugenics movements before and during World War II. In the latter half of the 20th century, the field saw renewed prominence with research on inheritance of behaviour and mental illness in humans, as well as research on genetically informative model organisms through selective breeding and crosses. In the late 20th and early 21st centuries, technological advances in molecular genetics made it possible to measure and modify the genome directly. This led to major advances in model organism research and in human studies, leading to new scientific discoveries.

Cultural neuroscience is a field of research that focuses on the interrelation between a human's cultural environment and neurobiological systems. The field particularly incorporates ideas and perspectives from related domains like anthropology, psychology, and cognitive neuroscience to study sociocultural influences on human behaviors. Such impacts on behavior are often measured using various neuroimaging methods, through which cross-cultural variability in neural activity can be examined.

<span class="mw-page-title-main">John C. DeFries</span> American geneticist

John C. DeFries is one of the world's leading behavior geneticists. His achievements include being President of the Behavior Genetics Association (1982–1983) and cofounder of the journal Behavior Genetics, as well as its co-editor (1970–1978). His awards include The Dobzhansky Award for Outstanding Research in Behavior Genetics, Consulting Editor of the Journal of Learning Disabilities (1987–2002), Fellowships in the International Academy for Research in Learning Disabilities, Association for Psychological Science, and the American Association for the Advancement of Science, Section J (Psychology).

Educational neuroscience is an emerging scientific field that brings together researchers in cognitive neuroscience, developmental cognitive neuroscience, educational psychology, educational technology, education theory and other related disciplines to explore the interactions between biological processes and education. Researchers in educational neuroscience investigate the neural mechanisms of reading, numerical cognition, attention and their attendant difficulties including dyslexia, dyscalculia and ADHD as they relate to education. Researchers in this area may link basic findings in cognitive neuroscience with educational technology to help in curriculum implementation for mathematics education and reading education. The aim of educational neuroscience is to generate basic and applied research that will provide a new transdisciplinary account of learning and teaching, which is capable of informing education. A major goal of educational neuroscience is to bridge the gap between the two fields through a direct dialogue between researchers and educators, avoiding the "middlemen of the brain-based learning industry". These middlemen have a vested commercial interest in the selling of "neuromyths" and their supposed remedies.

<span class="mw-page-title-main">Cognitive flexibility</span> Ability to switch thinking about two concepts

Cognitive flexibility is an intrinsic property of a cognitive system often associated with the mental ability to adjust its activity and content, switch between different task rules and corresponding behavioral responses, maintain multiple concepts simultaneously and shift internal attention between them. The term cognitive flexibility is traditionally used to refer to one of the executive functions. In this sense, it can be seen as neural underpinnings of adaptive and flexible behavior. Most flexibility tests were developed under this assumption several decades ago. Nowadays, cognitive flexibility can also be referred to as a set of properties of the brain that facilitate flexible yet relevant switching between functional brain states.

Cognitive genomics is the sub-field of genomics pertaining to cognitive function in which the genes and non-coding sequences of an organism's genome related to the health and activity of the brain are studied. By applying comparative genomics, the genomes of multiple species are compared in order to identify genetic and phenotypical differences between species. Observed phenotypical characteristics related to the neurological function include behavior, personality, neuroanatomy, and neuropathology. The theory behind cognitive genomics is based on elements of genetics, evolutionary biology, molecular biology, cognitive psychology, behavioral psychology, and neurophysiology.

<span class="mw-page-title-main">METTL16</span> Protein-coding gene in the species Homo sapiens

Methyltransferase like 16 is a protein that in humans is encoded by the METTL16 gene.

<span class="mw-page-title-main">Yulia Kovas</span> Geneticist and psychologist

Yulia Kovas is a geneticist and psychologist - currently a professor of genetics and psychology at Goldsmiths, University of London, and a visiting professor at UCL, King's College, Sussex and New York universities - in the United Kingdom. Kovas received the British Academy Wiley Prize in Psychology in 2012. Kovas is the director of the International Laboratory for Interdisciplinary Investigations into Individual Differences in Learning at Goldsmiths, and leads the genetically-informative research into individual differences in mathematical ability and achievement as part of the Twins Early Development Study at King's College, London.

References

  1. Plomin, R.; Kovas, Y. (2005). "Generalist genes and learning disabilities" (PDF). Psychol Bull. 131 (4): 592–617. doi:10.1037/0033-2909.131.4.592. PMID   16060804.
  2. Kovas, Y.; Plomin, R. (2006). "Generalist Genes: Implications for Cognitive Sciences" (PDF). Trends in Cognitive Sciences. 10 (5): 198–203. doi:10.1016/j.tics.2006.03.001. PMID   16580870. S2CID   13943225.
  3. Kovas, Y.; Plomin, R. (2007). "Learning abilities and disabilities: Generalist genes, specialist environments". Current Directions in Psychological Science. 16 (5): 284–288. doi:10.1111/j.1467-8721.2007.00521.x. PMC   2841819 . PMID   20351764.
  4. Plomin, R., Kovas, Y., & Haworth, C.M.A. (2007). "Generalist genes: Genetic links between brain, mind, and education". Mind, Brain, and Education. 1 (1): 11–19. doi:10.1111/j.1751-228X.2007.00002.x. PMC   2847193 . PMID   20383259.{{cite journal}}: CS1 maint: multiple names: authors list (link)