Genetic method

Last updated

The genetic method is a method of teaching mathematics coined by Otto Toeplitz in 1927. As an alternative to the axiomatic system, the method suggests using history of mathematics to deliver excitement and motivation and engage the class.

Contents

History

Otto Toeplitz at the University of Bonn Otto Toeplitz at the University of Bonn.jpg
Otto Toeplitz at the University of Bonn

Otto Toeplitz, a research mathematician in the area of functional analysis, introduced the method in his manuscript "The problem of calculus courses at universities and their demarcation against calculus courses at high schools" [1] in 1927. A part of this manuscript was published in a book in 1949, after Toeplitz's death.

Toeplitz's method was not completely new at the time. In his 1895 talk [2] given at the public meeting of the royal society of sciences in Goettingen, "On the arithmetization of mathematics", the famous German mathematician Felix Klein suggested the idea "that on a small scale, a learner naturally and always has to repeat the same developments that the sciences went through on a large scale." [2]

In addition, the genetic method was occasionally applied in Gerhard Kowalewski's book from 1909, "The classical problems of the analysis of the infinite". [3]

In 1962 the mathematics education in the US met a situation similar to that of Toeplitz in 1926 in Germany, in connection with the introduction of "New Mathematics". Shortly after the Sputnik crisis, a "New Mathematics" reform was introduced to improve the level of mathematics education in the US, so that the threat of Soviet engineers, assumed to be well educated in mathematics, could be met. To prepare students for advanced mathematics, the curriculum shifted to focus on abstraction and rigor. One of the more reasonable responses to "New Mathematics" was a collective statement by Lipman Bers, Morris Kline, George Pólya, and Max Schiffer, cosigned by 61 others, that was published in "The Mathematics Teacher" and The American Mathematical Monthly in 1962. [4] In this letter, the undersigned called for the use of the genetic method:

This may suggest a general principle: The best way to guide the mental development of the individual is to let him retrace the mental development of its great lines, of course, and not the thousand errors of detail. [5]

Also, in the 1980s, departments of mathematics in the US were facing criticism from other departments, especially departments in engineering, that they were failing too many of their students, and that those students that were certified as knowing calculus in fact had no idea how to apply its concepts in other classes. This led to the "Calculus Reform" in the US.

Motivation

Otto Toeplitz' classification of German mathematics students in 1927 Toeplitz Classification of Mathematics Students in 1927.pdf
Otto Toeplitz' classification of German mathematics students in 1927

Otto Toeplitz had alleged that only 5% of the class can be reached by the traditional axiomatic approaches. To engage 45% of the students, he suggested to expose the students to the history of mathematics. The history of mathematics would give students an idea of the challenges and the elements of mathematics research process and applications. Furthermore, Toeplitz claimed that 50% of the students in universities were not 'reachable' and were 'unfit' for university education. The classification is illustrated in the picture.

Variants

There are two recognised variants of the genetic method.

A direct genetic method displays the history of the development of mathematical concepts as a narrative. The history is taught step by step, exposing the class to each step that lead to the development of a mathematical concept. It is suggested to include confusions as a part of this method to demonstrate that mistakes and unsuccessful hypotheses are a part of the mathematics research process during the entire duration of mathematics history.

The indirect genetic method includes the same information as the direct one, but the confusions and problems throughout the development of each mathematical concept are analysed and the motivations for the correct resolution are discussed. More focus is given to the diagnosis of problems to allow students to diagnose problems in the current state of art in mathematics to form a part of their critical analysis skills in the field.

Related Research Articles

<span class="mw-page-title-main">David Hilbert</span> German mathematician (1862–1943)

David Hilbert was a German mathematician and one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics.

<span class="mw-page-title-main">Discrete mathematics</span> Study of discrete mathematical structures

Discrete mathematics is the study of mathematical structures that can be considered "discrete" rather than "continuous". Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics".

Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline.

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

<span class="mw-page-title-main">Nonstandard analysis</span> Calculus using a logically rigorous notion of infinitesimal numbers

The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using epsilon–delta procedures rather than infinitesimals. Nonstandard analysis instead reformulates the calculus using a logically rigorous notion of infinitesimal numbers.

<span class="mw-page-title-main">Hilbert's problems</span> 23 mathematical problems stated in 1900

Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the Bulletin of the American Mathematical Society. Earlier publications appeared in Archiv der Mathematik und Physik.

<span class="mw-page-title-main">Infinitesimal</span> Extremely small quantity in calculus; thing so small that there is no way to measure it

In mathematics, an infinitesimal number is a quantity that is closer to 0 than what any standard non-zero real number is, but is not 0. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the "infinity-th" item in a sequence.

Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts and how they form hierarchies of more complex structures and concepts, especially the fundamentally important structures that form the language of mathematics also called metamathematical concepts, with an eye to the philosophical aspects and the unity of mathematics. The search for foundations of mathematics is a central question of the philosophy of mathematics; the abstract nature of mathematical objects presents special philosophical challenges.

<span class="mw-page-title-main">Ernst Zermelo</span> German logician and mathematician (1871–1953)

Ernst Friedrich Ferdinand Zermelo was a German logician and mathematician, whose work has major implications for the foundations of mathematics. He is known for his role in developing Zermelo–Fraenkel axiomatic set theory and his proof of the well-ordering theorem. Furthermore, his 1929 work on ranking chess players is the first description of a model for pairwise comparison that continues to have a profound impact on various applied fields utilizing this method.

<span class="mw-page-title-main">Edmund Landau</span> German mathematician (1877–1938)

Edmund Georg Hermann Landau was a German mathematician who worked in the fields of number theory and complex analysis.

<span class="mw-page-title-main">Mathematics education</span> Teaching, learning, and scholarly research in mathematics

In contemporary education, mathematics education—known in Europe as the didactics or pedagogy of mathematics—is the practice of teaching, learning, and carrying out scholarly research into the transfer of mathematical knowledge.

<span class="mw-page-title-main">Constantin Carathéodory</span> Greek mathematician (1873–1950)

Constantin Carathéodory was a Greek mathematician who spent most of his professional career in Germany. He made significant contributions to real and complex analysis, the calculus of variations, and measure theory. He also created an axiomatic formulation of thermodynamics. Carathéodory is considered one of the greatest mathematicians of his era and the most renowned Greek mathematician since antiquity.

<span class="mw-page-title-main">Abraham Fraenkel</span> German-Israeli mathematician and Zionist (1891–1965)

Abraham Fraenkel was a German-born Israeli mathematician. He was an early Zionist and the first Dean of Mathematics at the Hebrew University of Jerusalem. He is known for his contributions to axiomatic set theory, especially his additions to Ernst Zermelo's axioms, which resulted in the Zermelo–Fraenkel set theory.

<span class="mw-page-title-main">Otto Toeplitz</span> German mathematician (1881–1940)

Otto Toeplitz was a German mathematician working in functional analysis.

<span class="mw-page-title-main">Hilbert's sixth problem</span> Axiomatization of probability and physics

Hilbert's sixth problem is to axiomatize those branches of physics in which mathematics is prevalent. It occurs on the widely cited list of Hilbert's problems in mathematics that he presented in the year 1900. In its common English translation, the explicit statement reads:

<span class="mw-page-title-main">Richard Courant</span> German-American mathematician (1888–1972)

Richard Courant was a German-American mathematician. He is best known by the general public for the book What is Mathematics?, co-written with Herbert Robbins. His research focused on the areas of real analysis, mathematical physics, the calculus of variations and partial differential equations. He wrote textbooks widely used by generations of students of physics and mathematics. He is also known for founding the institute now bearing his name.

Operational calculus, also known as operational analysis, is a technique by which problems in analysis, in particular differential equations, are transformed into algebraic problems, usually the problem of solving a polynomial equation.

<i>Elementary Calculus: An Infinitesimal Approach</i>

Elementary Calculus: An Infinitesimal approach is a textbook by H. Jerome Keisler. The subtitle alludes to the infinitesimal numbers of the hyperreal number system of Abraham Robinson and is sometimes given as An approach using infinitesimals. The book is available freely online and is currently published by Dover.

<span class="mw-page-title-main">A. H. Lightstone</span> Canadian mathematician

Albert Harold Lightstone (1926–1976) was a Canadian mathematician. He was one of the pioneers of non-standard analysis, a doctoral student of Abraham Robinson, and later a co-author with Robinson of the book Nonarchimedean Fields and Asymptotic Expansions.

Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.

References

Notes

Sources

Further reading