Giuseppe Arbia

Last updated

Giuseppe Arbia (born July 3, 1958) is an Italian statistician. He is known for his contributions to the field of spatial statistics and spatial econometrics. In 2006 together with Jean Paelinck he founded the Spatial Econometrics Association, which he has been chairing ever since. [1]

Contents

Education and career

Giuseppe Arbia earned his bachelor's degree cum laude from Sapienza University of Rome in 1981, and the Doctor of Philosophy from Cambridge University in 1987. In 1994 he become full professor. He currently holds the chair of Economic Statistics at the Catholic University of the Sacred Heart in Milan [2] and he is also Lecturer at the University of Italian Switzerland in Lugano. [3] He is the Leading Editor of the book series Spatial Statistics and Spatial Econometrics, by Elsevier, Editor-in-Chief of the Journal of Spatial Econometrics, by Springer-Verlag and Director of the Spatial Econometrics Advanced Institute. In his career he published 8 books and more than 200 articles, book chapters and reviews. [4] He is credited with coining Arbia's law of geography, also known as the second law of geography. [5] [6] [7]

Selected works

Books

Articles and book chapters

Related Research Articles

Econometrics is an application of statistical methods to economic data in order to give empirical content to economic relationships. More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference." An introductory economics textbook describes econometrics as allowing economists "to sift through mountains of data to extract simple relationships." Jan Tinbergen is one of the two founding fathers of econometrics. The other, Ragnar Frisch, also coined the term in the sense in which it is used today.

This page is a list of geography topics.

<span class="mw-page-title-main">Waldo R. Tobler</span> American geographer

Waldo Rudolph Tobler was an American-Swiss geographer and cartographer. Tobler is regarded as one of the most influential geographers and cartographers of the late 20th century and early 21st century. He is most well known for coining what has come to be referred to as Tobler's first law of geography. He also coined what has come to be referred to as Tobler's second law of geography.

<span class="mw-page-title-main">Tobler's first law of geography</span> The first of several proposed laws of geography

The First Law of Geography, according to Waldo Tobler, is "everything is related to everything else, but near things are more related than distant things." This first law is the foundation of the fundamental concepts of spatial dependence and spatial autocorrelation and is utilized specifically for the inverse distance weighting method for spatial interpolation and to support the regionalized variable theory for kriging. The first law of geography is the fundamental assumption used in all spatial analysis.

<span class="mw-page-title-main">Spatial analysis</span> Formal techniques which study entities using their topological, geometric, or geographic properties

Spatial analysis is any of the formal techniques which studies entities using their topological, geometric, or geographic properties. Spatial analysis includes a variety of techniques using different analytic approaches, especially spatial statistics. It may be applied in fields as diverse as astronomy, with its studies of the placement of galaxies in the cosmos, or to chip fabrication engineering, with its use of "place and route" algorithms to build complex wiring structures. In a more restricted sense, spatial analysis is geospatial analysis, the technique applied to structures at the human scale, most notably in the analysis of geographic data. It may also be applied to genomics, as in transcriptomics data.

<span class="mw-page-title-main">Modifiable areal unit problem</span> Source of statistical bias

The modifiable areal unit problem (MAUP) is a source of statistical bias that can significantly impact the results of statistical hypothesis tests. MAUP affects results when point-based measures of spatial phenomena are aggregated into spatial partitions or areal units as in, for example, population density or illness rates. The resulting summary values are influenced by both the shape and scale of the aggregation unit.

Luc E. Anselin is one of the developers of the field of spatial econometrics.

<span class="mw-page-title-main">Geography</span> Study of lands and inhabitants of Earth

Geography is the study of the lands, features, inhabitants, and phenomena of Earth. Geography is an all-encompassing discipline that seeks an understanding of Earth and its human and natural complexities—not merely where objects are, but also how they have changed and come to be. While geography is specific to Earth, many concepts can be applied more broadly to other celestial bodies in the field of planetary science. Geography has been called "a bridge between natural science and social science disciplines."

Geographic information systems (GISs) and geographic information science (GIScience) combine computer-mapping capabilities with additional database management and data analysis tools. Commercial GIS systems are very powerful and have touched many applications and industries, including environmental science, urban planning, agricultural applications, and others.

A boundary problem in analysis is a phenomenon in which geographical patterns are differentiated by the shape and arrangement of boundaries that are drawn for administrative or measurement purposes. The boundary problem occurs because of the loss of neighbors in analyses that depend on the values of the neighbors. While geographic phenomena are measured and analyzed within a specific unit, identical spatial data can appear either dispersed or clustered depending on the boundary placed around the data. In analysis with point data, dispersion is evaluated as dependent of the boundary. In analysis with areal data, statistics should be interpreted based upon the boundary.

Spatial econometrics is the field where spatial analysis and econometrics intersect. The term “spatial econometrics” was introduced for the first time by the Belgian economist Jean Paelinck in the general address he delivered to the annual meeting of the Dutch Statistical Association in May 1974 . In general, econometrics differs from other branches of statistics in focusing on theoretical models, whose parameters are estimated using regression analysis. Spatial econometrics is a refinement of this, where either the theoretical model involves interactions between different entities, or the data observations are not truly independent. Thus, models incorporating spatial auto-correlation or neighborhood effects can be estimated using spatial econometric methods. Such models are common in regional science, real estate economics, education economics, housing market and many others. Adopting a more general view, in the by-law of the Spatial Econometrics Association, the discipline is defined as the set of “models and theoretical instruments of spatial statistics and spatial data analysis to analyse various economic effects such as externalities, interactions, spatial concentration and many others”. Recent developments tend to include also methods and models from social network econometrics.

Quantitative geography is a subfield and methodological approach to geography that develops, tests, and uses scientific, mathematical, and statistical methods to analyze and model geographic phenomena and patterns. It aims to explain and predict the distribution and dynamics of human and physical geography through the collection and analysis of quantifiable data. The approach quantitative geographers take is generally in line with the scientific method, where a falsifiable hypothesis is generated, and then tested through observational studies. This has received criticism, and in recent years, quantitative geography has moved to include systematic model creation and understanding the limits of their models. This approach is used to study a wide range of topics, including population demographics, urbanization, environmental patterns, and the spatial distribution of economic activity. The methods of quantitative geography are often contrasted by those employed by qualitative geography, which is more focused on observing and recording characteristics of geographic place. However, there is increasing interest in using combinations of both qualitative and quantitative methods through mixed-methods research to better understand and contextualize geographic phenomena.

<span class="mw-page-title-main">CrimeStat</span>

CrimeStat is a crime mapping software program. CrimeStat is Windows-based program that conducts spatial and statistical analysis and is designed to interface with a geographic information system (GIS). The program is developed by Ned Levine & Associates under the direction of Ned Levine, with funding by the National Institute of Justice (NIJ), an agency of the United States Department of Justice. The program and manual are distributed for free by NIJ.

<span class="mw-page-title-main">Anil K. Bera</span> Indian econometrician

Anil K. Bera is an Indian-American econometrician. He is Professor of Economics at University of Illinois at Urbana–Champaign's Department of Economics. He is most noted for his work with Carlos Jarque on the Jarque–Bera test.

Eleonora Patacchini is an economist specializing in applied economics and applied statistics who grew up in Italy with her mother who was also a professor. She is a professor and associate department chair at Cornell University in the Department of Economics. Her research focuses on the empirical analysis of behavioral models of strategic interactions for decision making. Patacchini is an associate editor at Journal of Urban Economics and Statistical Methods & Applications. She is a columnist at the VOX CEPR Policy Portal where research-based policy analysis and commentary from leading economists are published frequently. She is also a co-editor of E-journal Economics and associate editor of the Journal of Urban Economics.

<span class="mw-page-title-main">Tobler's second law of geography</span> One of several proposed laws of geography

The second law of geography, according to Waldo Tobler, is "the phenomenon external to a geographic area of interest affects what goes on inside." This is an extension of his first. He first published it in 1999 in reply to a paper titled "Linear pycnophylactic reallocation comment on a paper by D. Martin" and then again in response to criticism of his first law of geography titled "On the First Law of Geography: A Reply." Much of this criticism was centered on the question of if laws were meaningful in geography or any of the social sciences. In this document, Tobler proposed his second law while recognizing others have proposed other concepts to fill the role of 2nd law. Tobler asserted that this phenomenon is common enough to warrant the title of 2nd law of geography. Unlike Tobler's first law of geography, which is relatively well accepted among geographers, there are a few contenders for the title of the second law of geography. Tobler's second law of geography is less well known but still has profound implications for geography and spatial analysis.

<span class="mw-page-title-main">Arbia's law of geography</span> One of several proposed laws of geography

Arbia's law of geography states, "Everything is related to everything else, but things observed at a coarse spatial resolution are more related than things observed at a finer resolution." Originally proposed as the 2nd law of geography, this is one of several laws competing for that title. Because of this, Arbia's law is sometimes referred to as the second law of geography, or Arbia's second law of geography.

<span class="mw-page-title-main">Technical geography</span> Study of using and creating tools to manage spatial information

Technical geography is the branch of geography that involves using, studying, and creating tools to obtain, analyze, interpret, understand, and communicate spatial information.

<span class="mw-page-title-main">Uncertain geographic context problem</span> Source of statistical bias

The uncertain geographic context problem or UGCoP is a source of statistical bias that can significantly impact the results of spatial analysis when dealing with aggregate data. The UGCoP is very closely related to the Modifiable areal unit problem (MAUP), and like the MAUP, arises from how we divide the land into areal units. It is caused by the difficulty, or impossibility, of understanding how phenomena under investigation in different enumeration units interact between enumeration units, and outside of a study area over time. It is particularly important to consider the UGCoP within the discipline of time geography, where phenomena under investigation can move between spatial enumeration units during the study period. Examples of research that needs to consider the UGCoP include food access and human mobility.

References

  1. "SEAI: The Association".
  2. "Docenti Università Cattolica del Sacro Cuore". docenti.unicatt.it.
  3. "Arbia, Giuseppe". Università della Svizzera italiana.
  4. "giuseppe Arbia". scholar.google.it. Retrieved 2021-03-07.
  5. Arbia, Giuseppe; Benedetti, R.; Espa, G. (1996). ""Effects of MAUP on image classification"". Journal of Geographical Systems. 3: 123–141.
  6. Tobler, Waldo (2004). "On the First Law of Geography: A Reply". Annals of the Association of American Geographers. 94 (2): 304–310. doi:10.1111/j.1467-8306.2004.09402009.x. S2CID   33201684 . Retrieved 10 March 2022.
  7. Smith, Peter (2005). "The laws of geography". Teaching Geography. 30 (3): 150.