Glaisher's theorem

Last updated

In number theory, Glaisher's theorem is an identity useful to the study of integer partitions. Proved in 1883 [1] by James Whitbread Lee Glaisher, it states that the number of partitions of an integer into parts not divisible by is equal to the number of partitions in which no part is repeated or more times. This generalizes a result established in 1748 by Leonhard Euler for the case .

Contents

Statement

It states that the number of partitions of an integer into parts not divisible by is equal to the number of partitions in which no part is repeated d or more times, which can be written formally as partitions of the form where and .

When this becomes the special case known as Euler's theorem, that the number of partitions of into distinct parts is equal to the number of partitions of into odd parts.

In the following examples, we use the multiplicity notation of partitions. For example, is a notation for the partition 1 + 1 + 1 + 1 + 2 + 3 + 3.

Example for d=2 (Euler's theorem case)

Among the 15 partitions of the number 7, there are 5, shown in bold below, that contain only odd parts (i.e. only odd numbers):

If we count now the partitions of 7 with distinct parts (i.e. where no number is repeated), we also obtain 5:

It should be noted that the partitions in bold in the first and second case are not the same, and it is not obvious why their number is the same.

Example for d=3

Among the 11 partitions of the number 6, there are 7, shown in bold below, that contain only parts not divisible by 3:

And if we count the partitions of 6 with no part that repeats more than 2 times, we also obtain 7:

Proof

A proof of the theorem can be obtained with generating functions. If we note the number of partitions with no parts divisible by d and the number of partitions with no parts repeated more than d-1 times, then the theorem means that for all n . The uniqueness of ordinary generating functions implies that instead of proving that for all n, it suffices to prove that the generating functions of and are equal, i.e. that .

Each generating function can be rewritten as infinite products (with a method similar to the infinite product of the partition function) :

(i.e. the product of terms where n is not divisible by d).

If we expand the infinite product for :

we see that each term in the numerator cancels with the corresponding multiple of d in the denominator. What remains after canceling all the numerator terms is exactly the infinite product for .

Hence the generating functions for and are equal.

Rogers-Ramanujan identities

If instead of counting the number of partitions with distinct parts we count the number of partitions with parts differing by at least 2, a further generalization is possible. It was discovered by Leonard James Rogers, and then independently by Schur and Ramanujan, in what are now known as the Rogers-Ramanujan identities. It states that:

The number of partitions whose parts differ by at least 2 is equal to the number of partitions involving only numbers congruent to 1 or 4 (mod 5).

For example, there are only 3 partitions of 7, shown in bold below, into parts differing by at least 2 (note: if a number is repeated in a partition, it means a difference of 0 between two parts, hence the partition is not counted):

And there are also only 3 partitions of 7 involving only the parts 1, 4, 6:

Notes

  1. J. W. L. Glaisher (1883). "A theorem in partitions". Messenger of Math. 12: 158–170.

Related Research Articles

<span class="mw-page-title-main">Elliptic curve</span> Algebraic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

<span class="mw-page-title-main">Partition (number theory)</span> Decomposition of an integer as a sum of positive integers

In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, 4 can be partitioned in five distinct ways:

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory. Modular forms appear in other areas, such as algebraic topology, sphere packing, and string theory.

In mathematics, the pentagonal number theorem, originally due to Euler, relates the product and series representations of the Euler function. It states that

In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·).

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem is a representation of a stochastic process as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning. They are typically used in complex statistical models consisting of observed variables as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as might be described by a graphical model. As typical in Bayesian inference, the parameters and latent variables are grouped together as "unobserved variables". Variational Bayesian methods are primarily used for two purposes:

  1. To provide an analytical approximation to the posterior probability of the unobserved variables, in order to do statistical inference over these variables.
  2. To derive a lower bound for the marginal likelihood of the observed data. This is typically used for performing model selection, the general idea being that a higher marginal likelihood for a given model indicates a better fit of the data by that model and hence a greater probability that the model in question was the one that generated the data.

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive.

In queueing theory, a discipline within the mathematical theory of probability, a Jackson network is a class of queueing network where the equilibrium distribution is particularly simple to compute as the network has a product-form solution. It was the first significant development in the theory of networks of queues, and generalising and applying the ideas of the theorem to search for similar product-form solutions in other networks has been the subject of much research, including ideas used in the development of the Internet. The networks were first identified by James R. Jackson and his paper was re-printed in the journal Management Science’s ‘Ten Most Influential Titles of Management Sciences First Fifty Years.’

Differential entropy is a concept in information theory that began as an attempt by Claude Shannon to extend the idea of (Shannon) entropy, a measure of average surprisal of a random variable, to continuous probability distributions. Unfortunately, Shannon did not derive this formula, and rather just assumed it was the correct continuous analogue of discrete entropy, but it is not. The actual continuous version of discrete entropy is the limiting density of discrete points (LDDP). Differential entropy is commonly encountered in the literature, but it is a limiting case of the LDDP, and one that loses its fundamental association with discrete entropy.

In the mathematical discipline of graph theory, the expander walk sampling theorem intuitively states that sampling vertices in an expander graph by doing relatively short random walk can simulate sampling the vertices independently from a uniform distribution. The earliest version of this theorem is due to Ajtai, Komlós & Szemerédi (1987), and the more general version is typically attributed to Gillman (1998).

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

A repeating decimal or recurring decimal is decimal representation of a number whose digits are periodic and the infinitely repeated portion is not zero. It can be shown that a number is rational if and only if its decimal representation is repeating or terminating. For example, the decimal representation of 1/3 becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is 3227/555, whose decimal becomes periodic at the second digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... At present, there is no single universally accepted notation or phrasing for repeating decimals.

In fluid dynamics, aerodynamic potential flow codes or panel codes are used to determine the fluid velocity, and subsequently the pressure distribution, on an object. This may be a simple two-dimensional object, such as a circle or wing, or it may be a three-dimensional vehicle.

Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.

<span class="mw-page-title-main">Marchenko–Pastur distribution</span> Distribution of singular values of large rectangular random matrices

In the mathematical theory of random matrices, the Marchenko–Pastur distribution, or Marchenko–Pastur law, describes the asymptotic behavior of singular values of large rectangular random matrices. The theorem is named after Ukrainian mathematicians Vladimir Marchenko and Leonid Pastur who proved this result in 1967.

In coding theory, burst error-correcting codes employ methods of correcting burst errors, which are errors that occur in many consecutive bits rather than occurring in bits independently of each other.

References