Golden binary

Last updated

In gravitational wave astronomy, a golden binary is a binary black hole collision event whose inspiral and ringdown phases have been measured accurately enough to provide separate measurements of the initial and final black hole masses. [1] [2]

Contents

Testing general relativity

Current LIGO/Virgo protocol relies on its library of several hundred thousand precomputed templates of black hole collisions conceivably detectable in their frequency range. A putative binary black hole collision signal consists of inspiral, merger, and ringdown phases. The complete signal is compared with the template library, and event parameters and significance are based on an analysis of such matches.

This allows for self-consistency checks of general relativity. In order to test certain competing theories of gravity, one faces the problem that only general relativity has been studied enough that the complete merger phase is known. Therefore, only a signal that can be matched separately in the inspiral and ringdown phases can be used to allow or contradict such theories.

Identified golden binaries

GW150914 was a golden binary, indeed, this led to additional internal checks done by LIGO. [3] [4] GW151226 and LVT151012 were not. [4]

Related Research Articles

<span class="mw-page-title-main">LIGO</span> Gravitational wave detector

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These observatories use mirrors spaced four kilometers apart which are capable of detecting a change of less than one ten-thousandth the charge diameter of a proton.

<span class="mw-page-title-main">Laser Interferometer Space Antenna</span> European space mission to measure gravitational waves

The Laser Interferometer Space Antenna (LISA) is a proposed space probe to detect and accurately measure gravitational waves—tiny ripples in the fabric of spacetime—from astronomical sources. LISA would be the first dedicated space-based gravitational-wave observatory. It aims to measure gravitational waves directly by using laser interferometry. The LISA concept has a constellation of three spacecraft arranged in an equilateral triangle with sides 2.5 million kilometres long, flying along an Earth-like heliocentric orbit. The distance between the satellites is precisely monitored to detect a passing gravitational wave.

A gravastar is an object hypothesized in astrophysics by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has usual black hole metric outside of the horizon, but de Sitter metric inside. On the horizon there is a thin shell of matter. The term "gravastar" is a portmanteau of the words "gravitational vacuum star".

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

<span class="mw-page-title-main">Virgo interferometer</span> Gravitational wave detector in Santo Stefano a Macerata, Tuscany, Italy

The Virgo interferometer is a large Michelson interferometer designed to detect gravitational waves predicted by general relativity. It is located in Santo Stefano a Macerata, near the city of Pisa, Italy. The instrument's two arms are three kilometres long, housing its mirrors and instrumentation inside an ultra-high vacuum.

<span class="mw-page-title-main">Gravitational wave</span> Propagating spacetime ripple

Gravitational waves are waves of the intensity of gravity that are generated by the accelerated masses of binary stars and other motions of gravitating masses, and propagate as waves outward from their source at the speed of light. They were first proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves.

<span class="mw-page-title-main">Gravitational-wave astronomy</span> Branch of astronomy using gravitational waves

Gravitational-wave astronomy is an emerging field of science, concerning the observations of gravitational waves to collect relatively unique data and make inferences about objects such as neutron stars and black holes, events such as supernovae, and processes including those of the early universe shortly after the Big Bang.

<span class="mw-page-title-main">Alessandra Buonanno</span> Italian / American physicist

Alessandra Buonanno is an Italian naturalized-American theoretical physicist and director at the Max Planck Institute for Gravitational Physics in Potsdam. She is the head of the "Astrophysical and Cosmological Relativity" department. She holds a research professorship at the University of Maryland, College Park, and honorary professorships at the Humboldt University in Berlin, and the University of Potsdam. She is a leading member of the LIGO Scientific Collaboration, which observed gravitational waves from a binary black-hole merger in 2015.

<span class="mw-page-title-main">Binary black hole</span> System consisting of two black holes in close orbit around each other

A binary black hole (BBH), or black hole binary, is a system consisting of two black holes in close orbit around each other. Like black holes themselves, binary black holes are often divided into stellar binary black holes, formed either as remnants of high-mass binary star systems or by dynamic processes and mutual capture; and binary supermassive black holes, believed to be a result of galactic mergers.

In astrophysics the chirp mass of a compact binary system determines the leading-order orbital evolution of the system as a result of energy loss from emitting gravitational waves. Because the gravitational wave frequency is determined by orbital frequency, the chirp mass also determines the frequency evolution of the gravitational wave signal emitted during a binary's inspiral phase. In gravitational wave data analysis it is easier to measure the chirp mass than the two component masses alone.

<span class="mw-page-title-main">Extreme mass ratio inspiral</span>

In astrophysics, an extreme mass ratio inspiral (EMRI) is the orbit of a relatively light object around a much heavier object, that gradually spirals in due to the emission of gravitational waves. Such systems are likely to be found in the centers of galaxies, where stellar mass compact objects, such as stellar black holes and neutron stars, may be found orbiting a supermassive black hole. In the case of a black hole in orbit around another black hole this is an extreme mass ratio binary black hole. The term EMRI is sometimes used as a shorthand to denote the emitted gravitational waveform as well as the orbit itself.

The TianQin Project is a proposed space-borne gravitational-wave observatory consisting of three spacecraft in Earth orbit. The TianQin project is being led by Professor Luo Jun, President of Sun Yat-sen University, and is based in the university's Zhuhai campus. Construction on project-related infrastructure, which will include a research building, ultra-quiet cave laboratory, and observation center, began in March 2016. The project is estimated to cost 15 billion RMB, with a projected launch date in 2030s. In December 2019, China launched "Tianqin-1, its first satellite for space-based gravitational wave detection."

<span class="mw-page-title-main">First observation of gravitational waves</span> 2015 direct detection of gravitational waves by the LIGO and VIRGO interferometers

The first direct observation of gravitational waves was made on 14 September 2015 and was announced by the LIGO and Virgo collaborations on 11 February 2016. Previously, gravitational waves had been inferred only indirectly, via their effect on the timing of pulsars in binary star systems. The waveform, detected by both LIGO observatories, matched the predictions of general relativity for a gravitational wave emanating from the inward spiral and merger of a pair of black holes of around 36 and 29 solar masses and the subsequent "ringdown" of the single resulting black hole. The signal was named GW150914. It was also the first observation of a binary black hole merger, demonstrating both the existence of binary stellar-mass black hole systems and the fact that such mergers could occur within the current age of the universe.

<span class="mw-page-title-main">Carlos Lousto</span>

Carlos O. Lousto is a Distinguished Professor in the School of Mathematical Sciences in Rochester Institute of Technology, known for his work on black hole collisions.

Manuela Campanelli is a distinguished professor of astrophysics and mathematical sciences of the Rochester Institute of Technology, and the director of its Center for Computational Relativity and Gravitation and Astrophysics and Space Sciences Institute for Research Excellence. Her work focuses on the astrophysics of merging black holes and neutron stars, which are powerful sources of gravitational waves, electromagnetic radiation and relativistic jets. This research is central to the new field of multi-messenger astronomy.

<span class="mw-page-title-main">GW170817</span> Gravitational-wave signal detected in 2017

GW 170817 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 17 August 2017, originating from the shell elliptical galaxy NGC 4993. The signal was produced by the last minutes of a binary pair of neutron stars' inspiral process, ending with a merger. It is the first GW observation that has been confirmed by non-gravitational means. Unlike the five previous GW detections, which were of merging black holes not expected to produce a detectable electromagnetic signal, the aftermath of this merger was also seen by 70 observatories on 7 continents and in space, across the electromagnetic spectrum, marking a significant breakthrough for multi-messenger astronomy. The discovery and subsequent observations of GW 170817 were given the Breakthrough of the Year award for 2017 by the journal Science.

PyCBC is an open source software package primarily written in the Python programming language which is designed for use in gravitational-wave astronomy and gravitational-wave data analysis. PyCBC contains modules for signal processing, FFT, matched filtering, gravitational waveform generation, among other tasks common in gravitational-wave data analysis.

<span class="mw-page-title-main">Effective one-body formalism</span> Approach to the two-body problem in general relativity

The effective one-body or EOB approach is an analytical approach to the gravitational two-body problem in general relativity. It was introduced by Alessandra Buonanno and Thibault Damour in 1999. It aims to describe all different phases of the two-body dynamics in a single analytical method.

GW 190412 was a gravitational wave (GW) signal observed by the LIGO and Virgo detectors on 12 April 2019. In April 2020, it was announced as the first time a collision of a pair of very differently sized black holes has been detected. As a result of this asymmetry, the signal included two measurable harmonics with frequencies approximately a factor 1.5 apart.

References

  1. Hughes, Scott A; Menou, Kristen (2005). "Golden Binary Gravitational-Wave Sources: Robust Probes of Strong-Field Gravity". The Astrophysical Journal. 623 (2): 689–699. arXiv: astro-ph/0410148 . Bibcode:2005ApJ...623..689H. doi:10.1086/428826. S2CID   18971575.
  2. Nakano, Hiroyuki; Tanaka, Takahiro; Nakamura, Takashi (2015). "Possible golden events for ringdown gravitational waves". Physical Review D. 92 (6): 064003. arXiv: 1506.00560 . Bibcode:2015PhRvD..92f4003N. doi:10.1103/PhysRevD.92.064003. S2CID   85464193.
  3. Ghosh, Abhirup; Ghosh, Archisman; Johnson-Mcdaniel, Nathan K; Mishra, Chandra Kant; Ajith, Parameswaran; Del Pozzo, Walter; Nichols, David A; Chen, Yanbei; Nielsen, Alex B; Berry, Christopher P L; London, Lionel (2016). "Testing general relativity using golden black-hole binaries". Physical Review D. 94 (2): 021101. arXiv: 1602.02453 . Bibcode:2016PhRvD..94b1101G. doi:10.1103/PhysRevD.94.021101. S2CID   4688859.
  4. 1 2 Berry, Christopher P L (27 August 2016). "Testing general relativity using golden black-hole binaries" . Retrieved 19 October 2017.