This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Gravity, in the context of fermenting alcoholic beverages, refers to the specific gravity (abbreviated SG), or relative density compared to water, of the wort or must at various stages in the fermentation. The concept is used in the brewing and wine-making industries. Specific gravity is measured by a hydrometer, refractometer, pycnometer or oscillating U-tube electronic meter.
The density of a wort is largely dependent on the sugar content of the wort. During alcohol fermentation, yeast converts sugars into carbon dioxide and alcohol. By monitoring the decline in SG over time the brewer obtains information about the health and progress of the fermentation and determines that it is complete when gravity stops declining. If the fermentation is finished, the specific gravity is called the final gravity (abbreviated FG). For example, for a typical strength beer, original gravity (abbreviated OG) could be 1.050 and FG could be 1.010.
Several different scales have been used for measuring the original gravity. For historical reasons, the brewing industry largely uses the Plato scale (°P), which is essentially the same as the Brix scale used by the wine industry. For example, OG 1.050 is roughly equivalent to 12 °P.
By considering the original gravity, the brewer or vintner obtains an indication as to the probable ultimate alcoholic content of their product. The OE (Original Extract) is often referred to as the "size" of the beer and is, in Europe, often printed on the label as Stammwürze or sometimes just as a per cent. In the Czech Republic, for example, common descriptions are "10 degree beers", "12 degree beers" which refers to the gravity in Plato of the wort before the fermentation.
The difference between the original gravity of the wort and the final gravity of the beer is an indication of how much sugar has been turned into alcohol. The bigger the difference, the greater the amount of alcohol present and hence the stronger the beer. This is why strong beers are sometimes referred to as high gravity beers, and "session" or "small" beers are called low gravity beers, even though in theory the final gravity of a strong beer might be lower than that of a session beer because of the greater amount of alcohol present.
Specific gravity is the ratio of the density of a sample to the density of water. The ratio depends on the temperature and pressure of both the sample and water. The pressure is always considered (in brewing) to be 1 standard atmosphere (1,013.25 hPa) and the temperature is usually 20 °C (68 °F) for both sample and water but in some parts of the world different temperatures may be used and there are hydrometers sold calibrated to, for example, 16 °C (60 °F). It is important, where any conversion to °P is involved, that the proper pair of temperatures be used for the conversion table or formula being employed. The current ASBC table is (20 °C/20 °C) meaning that the density is measured at 20 °C (68 °F) and referenced to the density of water at 20 °C (68 °F) (i.e. 0.998203 g/cm3 or 0.0360624 lb/cu in). Mathematically
This formula gives the true specific gravity i.e. based on densities. Brewers cannot (unless using a U-tube meter) measure density directly and so must use a hydrometer, whose stem is bathed in air, or pycnometer weighings which are also done in air. Hydrometer readings and the ratio of pycnometer weights are influenced by air (see article Specific Gravity for details) and are called "apparent" readings. True readings are easily obtained from apparent readings by
However, the ASBC table uses apparent specific gravities, so many electronic density meters will produce the correct °P numbers automatically.
The original gravity is the specific gravity measured before fermentation. From it the analyst can compute the original extract which is the mass (grams) of sugar in 100 grams (3.5 oz) of wort (°P) by use of the Plato scale. The symbol will denote OE in the formulas which follow.
The final gravity is the specific gravity measured at the completion of fermentation. The apparent extract, denoted , is the °P obtained by inserting the FG into the formulas or tables in the Plato scale article. The use of "apparent" here is not to be confused with the use of that term to describe specific gravity readings which have not been corrected for the effects of air.
The amount of extract which was not converted to yeast biomass, carbon dioxide or ethanol can be estimated by removing the alcohol from beer which has been degassed and clarified by filtration or other means. This is often done as part of a distillation in which the alcohol is collected for quantitative analysis but can also be done by evaporation in a water bath. If the residue is made back up to the original volume of beer which was subject to the evaporation process, the specific gravity of that reconstituted beer measured and converted to Plato using the tables and formulas in the Plato article then the TE is
See the Plato article for details. TE is denoted by the symbol . This is the number of grams of extract remaining in 100 grams (3.5 oz) of beer at the completion of fermentation.
Knowing the amount of extract in 100 grams (3.5 oz) of wort before fermentation and the number of grams of extract in 100 grams (3.5 oz) of beer at its completion, the amount alcohol (in grams) formed during the fermentation can be determined. The formula follows, attributed to Balling [1] : 427
where gives the number of grams of alcohol per 100 grams (3.5 oz) of beer i.e. the ABW. Note that the alcohol content depends not only on the diminution of extract but also on the multiplicative factor which depends on the OE. De Clerck [1] : 428 tabulated Ballings values for but they can be calculated simply from p
This formula is fine for those who wish to go to the trouble to compute TE (whose real value lies in determining attenuation) which is only a small fraction of brewers. Others want a simpler, quicker route to determining alcoholic strength. This lies in Tabarie's Principle [1] : 428 which states that the depression of specific gravity in beer to which ethanol is added is the same as the depression of water to which an equal amount of alcohol (on a w/w basis) has been added. Use of Tabarie's principle lets us calculate the true extract of a beer with apparent extract as
where is a function that converts SG to °P (see Plato) and (see Plato) its inverse and is the density of an aqueous ethanol solution of strength by weight at 20 °C. Inserting this into the alcohol formula the result, after rearrangement, is
Which can be solved, albeit iteratively, for as a function of OE and AE. It is again possible to come up with a relationship of the form
De Clerk also tabulates values for .
Most brewers and consumers are used to having alcohol content reported by volume (ABV) rather than weight. Interconversion is simple but the specific gravity of the beer must be known:
This is the number of cubic centimetres of ethanol in 100 cc (6 cu in) of beer.
Because ABV depends on multiplicative factors (one of which depends on the original extract and one on the final) as well as the difference between OE and AE it is impossible to come up with a formula of the form
where is a simple constant. Because of the near linear relationship between extract and (SG − 1) (see specific gravity) in particular because the ABV formula is written as
If the value given above for corresponds to an OE of 12 °P which is 0.4187, and 1.010 can be taken as a typical FG then this simplifies to
With typical values of 1.050 and 1.010 for, respectively, OG and FG this simplified formula gives an ABV of 5.31% as opposed to 5.23% for the more accurate formula. Formulas for alcohol similar to this last simple one abound in the brewing literature and are very popular among home brewers. Formulas such as this one make it possible to mark hydrometers with "potential alcohol" scales based on the assumption that the FG will be close to 1 which is more likely to be the case in wine making than in brewing and it is to vintners that these are usually sold.
The drop in extract during the fermentation divided by the OE represents the percentage of sugar which has been consumed. The real degree of attenuation (RDF) is based on TE
and the apparent degree of fermentation (ADF) is based on AE
Because of the near linear relationship between (SG − 1) and °P specific gravities can be used in the ADF formula as shown.
The relationship between SG and °P can be roughly approximated using the rule-of-thumb conversion equation "brewer's points divided by four", where the "Brewing" or "Gravity points" are the thousandths of SG above 1:
The amount of extract in degrees Plato are thus approximately given by the points divided by 4:
As an example, a wort of SG 1.050 would be said to have 1000(1.050 − 1) = 50 points, and contain 50/4 = 12.5 °P of extract. This is simply the linear approximation to the true relationship between SG and °P.
However, the above approximation has increasingly larger error for increasing values of specific gravity and deviates e.g. by 0.67°P when SG = 1.080. A much more accurate (mean average error less than 0.02°P) conversion can be made using the following formula: [2]
where the specific gravity is to be measured at a temperature of T = 20 °C. The equivalent relation giving SG at 20 °C for a given °P is:
Points can be used in the ADF and RDF formulas. Thus a beer with OG 1.050 which fermented to 1.010 would be said to have attenuated 100 × (50 − 10)/50 = 80%. Points can also be used in the SG versions of the alcohol formulas. It is simply necessary to multiply by 1000 as points are 1000 times (SG − 1).
Software tools are available to brewers to convert between the various units of measurement and to adjust mash ingredients and schedules to meet target values. The resulting data can be exchanged via BeerXML to other brewers to facilitate accurate replication.
Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.
Relative density, sometimes called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is often preferred in scientific usage, whereas the term "specific gravity" is deprecated.
In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. It is what makes heavenly bodies spherical, in general.
Terminal velocity is the maximum velocity (speed) attainable by an object as it falls through a fluid. It occurs when the sum of the drag force (Fd) and the buoyancy is equal to the downward force of gravity (FG) acting on the object. Since the net force on the object is zero, the object has zero acceleration. For objects falling through regular air, the buoyant force is usually dismissed and not taken into account as its effects are negligible
In the calculus of variations, a field of mathematical analysis, the functional derivative relates a change in a functional to a change in a function on which the functional depends.
Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.
Alcohol by volume is a standard measure of how much alcohol (ethanol) is contained in a given volume of an alcoholic beverage. It is defined as the number of millilitres (mL) of pure ethanol present in 100 mL of solution at 20 °C (68 °F). The number of millilitres of pure ethanol is the mass of the ethanol divided by its density at 20 °C (68 °F), which is 0.78945 g/mL. The alc/vol standard is used worldwide. The International Organization of Legal Metrology has tables of density of water–ethanol mixtures at different concentrations and temperatures.
The density of air or atmospheric density, denoted ρ, is the mass per unit volume of Earth's atmosphere. Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C, air has a density of approximately 1.204 kg/m3 (0.0752 lb/cu ft), according to the International Standard Atmosphere (ISA). At 101.325 kPa (abs) and 15 °C (59 °F), air has a density of approximately 1.225 kg/m3 (0.0765 lb/cu ft), which is about 1⁄800 that of water, according to the International Standard Atmosphere (ISA). Pure liquid water is 1,000 kg/m3 (62 lb/cu ft).
A slurry is a mixture of denser solids suspended in liquid, usually water. The most common use of slurry is as a means of transporting solids or separating minerals, the liquid being a carrier that is pumped on a device such as a centrifugal pump. The size of solid particles may vary from 1 micrometre up to hundreds of millimetres. The particles may settle below a certain transport velocity and the mixture can behave like a Newtonian or non-Newtonian fluid. Depending on the mixture, the slurry may be abrasive and/or corrosive.
Degrees Brix is a measure of the dissolved solids in a liquid, and is commonly used to measure dissolved sugar content of an aqueous solution. One degree Brix is 1 gram of sucrose in 100 grams of solution and represents the strength of the solution as percentage by mass. If the solution contains dissolved solids other than pure sucrose, then the °Bx only approximates the dissolved solid content. For example, when one adds equal amounts of salt and sugar to equal amounts of water, the degrees of refraction (BRIX) of the salt solution rises faster than the sugar solution. The °Bx is traditionally used in the wine, sugar, carbonated beverage, fruit juice, fresh produce, maple syrup and honey industries. The °Bx is also used for measuring the concentration of a cutting fluid mixed in water for metalworking processes.
The American Petroleum Institute gravity, or API gravity, is a measure of how heavy or light a petroleum liquid is compared to water: if its API gravity is greater than 10, it is lighter and floats on water; if less than 10, it is heavier and sinks.
In thermodynamics, the specific volume of a substance is a mass-specific intrinsic property of the substance, defined as the quotient of the substance's volume to its mass. It is the reciprocal of density ρ (rho) and it is also related to the molar volume and molar mass:
In fluid mechanics and hydraulics, open-channel flow is a type of liquid flow within a conduit with a free surface, known as a channel. The other type of flow within a conduit is pipe flow. These two types of flow are similar in many ways but differ in one important respect: open-channel flow has a free surface, whereas pipe flow does not, resulting in flow dominated by gravity but not hydraulic pressure.
Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks, mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting. Sediment transport due to fluid motion occurs in rivers, oceans, lakes, seas, and other bodies of water due to currents and tides. Transport is also caused by glaciers as they flow, and on terrestrial surfaces under the influence of wind. Sediment transport due only to gravity can occur on sloping surfaces in general, including hillslopes, scarps, cliffs, and the continental shelf—continental slope boundary.
In queueing theory, a discipline within the mathematical theory of probability, the Pollaczek–Khinchine formula states a relationship between the queue length and service time distribution Laplace transforms for an M/G/1 queue. The term is also used to refer to the relationships between the mean queue length and mean waiting/service time in such a model.
In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.
A correlation swap is an over-the-counter financial derivative that allows one to speculate on or hedge risks associated with the observed average correlation, of a collection of underlying products, where each product has periodically observable prices, as with a commodity, exchange rate, interest rate, or stock index.
In brewing, attenuation refers to the conversion of sugars into alcohol and carbon dioxide by the fermentation process; the greater the attenuation, the more sugar has been converted into alcohol. A more attenuated beer is drier and more alcoholic than a less attenuated beer made from the same wort.
In chemistry, the mass concentrationρi is defined as the mass of a constituent mi divided by the volume of the mixture V.
When drinking beer, there are many factors to be considered. Principal among them are bitterness, the variety of flavours present in the beverage and their intensity, alcohol content, and colour. Standards for those characteristics allow a more objective and uniform determination to be made on the overall qualities of any beer.