Grid complex

Last updated

Latticial metal complex or grid complex is a supramolecular complex of several metal atoms and coordinating ligands which form a grid-like structural motif. The structure formation usually occurs while on thermodynamic molecular self-assembly. They have properties that make them interesting for information technology as the future storage materials. [1] Chelate ligands are used as ligands in tetrahedral or octahedral structures, which mostly use nitrogen atoms in pyridine like ring systems other than donor centers. Suitable metal ions are in accordance with octahedral coordinating transition metal ions such as Mn or rare tetrahedral Coordinating such as Ag used. [1]

Contents

Nomenclature

The nomenclature is based on [n × m] G, n corresponds to the number of ligands above the metal ion level, m the number below ones. In case of using only one ligand type, the homoleptic grid is formed in a square [nxn] structure. When using different ligands arise heteroleptic complexes, however, compete with the homoleptic. The number of metal ions is always n + m.

Application

The grid complexes exhibit pH-dependent changes in the optical absorption, electronic spin states and reversible redox states. The latticial metal complexes may thus be used theoretically for information storage and processing in the future. [2] [3] [4]

Other Uses

An interwoven grid complex has been used to template the synthesis of a doubly-twisted [2]catenane (otherwise known as a Solomon Link). [5] The unique arrangement of interwoven ligands around the planar array of iron, zinc, or cobalt ions generated the crossing points required to covalently trap the interlocked structure using ring-closing metathesis. Building on this discovery, 2 × 2 interwoven grids were used to template the synthesis of more topologically complex molecules: a six-crossing doubly-interlocked [2]catenane and a granny knot. [6] In 2021, the first report of a 3 × 3 interwoven grid was published. It was used to template the synthesis of a molecular Endless Knot. [7]

Related Research Articles

<span class="mw-page-title-main">Rotaxane</span> Interlocked molecular structure resembling a dumbbell

In chemistry, a rotaxane is a mechanically interlocked molecular architecture consisting of a dumbbell-shaped molecule which is threaded through a macrocycle. The two components of a rotaxane are kinetically trapped since the ends of the dumbbell are larger than the internal diameter of the ring and prevent dissociation (unthreading) of the components since this would require significant distortion of the covalent bonds.

<span class="mw-page-title-main">Polyoxometalate</span> Polyatomic ion made of ≥3 transition metal oxyanions bound by oxygen in a 3D structure

In chemistry, a polyoxometalate is a polyatomic ion, usually an anion, that consists of three or more transition metal oxyanions linked together by shared oxygen atoms to form closed 3-dimensional frameworks. The metal atoms are usually group 6 or less commonly group 5 transition metals and Tc in their high oxidation states. Polyoxometalates are often colorless, orange or red diamagnetic anions. Two broad families are recognized, isopolymetalates, composed of only one kind of metal and oxide, and heteropolymetalates, composed of one metal, oxide, and a main group oxyanion. Many exceptions to these general statements exist.

Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component. While traditional chemistry concentrates on the covalent bond, supramolecular chemistry examines the weaker and reversible non-covalent interactions between molecules. These forces include hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi–pi interactions and electrostatic effects.

<span class="mw-page-title-main">Catenane</span> Molecule composed of two or more intertwined rings

In macromolecular chemistry, a catenane is a mechanically interlocked molecular architecture consisting of two or more interlocked macrocycles, i.e. a molecule containing two or more intertwined rings. The interlocked rings cannot be separated without breaking the covalent bonds of the macrocycles. They are conceptually related to other mechanically interlocked molecular architectures, such as rotaxanes, molecular knots or molecular Borromean rings. Recently the terminology "mechanical bond" has been coined that describes the connection between the macrocycles of a catenane. Catenanes have been synthesised in two different ways: statistical synthesis and template-directed synthesis.

<span class="mw-page-title-main">Isolobal principle</span> Method of predicting the bonding properties of certain organometallic compounds

In organometallic chemistry, the isolobal principle is a strategy used to relate the structure of organic and inorganic molecular fragments in order to predict bonding properties of organometallic compounds. Roald Hoffmann described molecular fragments as isolobal "if the number, symmetry properties, approximate energy and shape of the frontier orbitals and the number of electrons in them are similar – not identical, but similar." One can predict the bonding and reactivity of a lesser-known species from that of a better-known species if the two molecular fragments have similar frontier orbitals, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Isolobal compounds are analogues to isoelectronic compounds that share the same number of valence electrons and structure. A graphic representation of isolobal structures, with the isolobal pairs connected through a double-headed arrow with half an orbital below, is found in Figure 1.

<span class="mw-page-title-main">Molecular knot</span> Molecule whose structure resembles a knot

In chemistry, a molecular knot is a mechanically interlocked molecular architecture that is analogous to a macroscopic knot. Naturally-forming molecular knots are found in organic molecules like DNA, RNA, and proteins. It is not certain that naturally occurring knots are evolutionarily advantageous to nucleic acids or proteins, though knotting is thought to play a role in the structure, stability, and function of knotted biological molecules. The mechanism by which knots naturally form in molecules, and the mechanism by which a molecule is stabilized or improved by knotting, is ambiguous. The study of molecular knots involves the formation and applications of both naturally occurring and chemically synthesized molecular knots. Applying chemical topology and knot theory to molecular knots allows biologists to better understand the structures and synthesis of knotted organic molecules.

<span class="mw-page-title-main">Supramolecular assembly</span> Complex of molecules non-covalently bound together

In chemistry, a supramolecular assembly is a complex of molecules held together by noncovalent bonds. While a supramolecular assembly can be simply composed of two molecules, or a defined number of stoichiometrically interacting molecules within a quaternary complex, it is more often used to denote larger complexes composed of indefinite numbers of molecules that form sphere-, rod-, or sheet-like species. Colloids, liquid crystals, biomolecular condensates, micelles, liposomes and biological membranes are examples of supramolecular assemblies, and their realm of study is known as supramolecular chemistry. The dimensions of supramolecular assemblies can range from nanometers to micrometers. Thus they allow access to nanoscale objects using a bottom-up approach in far fewer steps than a single molecule of similar dimensions.

The term coordination geometry is used in a number of related fields of chemistry and solid state chemistry/physics.

<span class="mw-page-title-main">Macrocycle</span> Molecule with a large ring structure

Macrocycles are often described as molecules and ions containing a ring of twelve or more atoms. Classical examples include the crown ethers, calixarenes, porphyrins, and cyclodextrins. Macrocycles describe a large, mature area of chemistry.

<span class="mw-page-title-main">Jean-Pierre Sauvage</span> French chemist, Nobel laureate

Jean-Pierre Sauvage is a French coordination chemist working at Strasbourg University. He graduated from the National School of Chemistry of Strasbourg, in 1967. He has specialized in supramolecular chemistry for which he has been awarded the 2016 Nobel Prize in Chemistry along with Sir J. Fraser Stoddart and Bernard L. Feringa.

In chemistry, mechanically-interlocked molecular architectures (MIMAs) are molecules that are connected as a consequence of their topology. This connection of molecules is analogous to keys on a keychain loop. The keys are not directly connected to the keychain loop but they cannot be separated without breaking the loop. On the molecular level, the interlocked molecules cannot be separated without the breaking of the covalent bonds that comprise the conjoined molecules; this is referred to as a mechanical bond. Examples of mechanically interlocked molecular architectures include catenanes, rotaxanes, molecular knots, and molecular Borromean rings. Work in this area was recognized with the 2016 Nobel Prize in Chemistry to Bernard L. Feringa, Jean-Pierre Sauvage, and J. Fraser Stoddart.

<span class="mw-page-title-main">David Leigh (scientist)</span> British chemist

David Alan Leigh FRS FRSE FRSC is a British chemist, Royal Society Research Professor and, since 2014, the Sir Samuel Hall Chair of Chemistry in the Department of Chemistry at the University of Manchester. He was previously the Forbes Chair of Organic Chemistry at the University of Edinburgh (2001–2012) and Professor of Synthetic Chemistry at the University of Warwick (1998–2001).

<span class="mw-page-title-main">Dynamic combinatorial chemistry</span>

Dynamic combinatorial chemistry (DCC); also known as constitutional dynamic chemistry (CDC) is a method to the generation of new molecules formed by reversible reaction of simple building blocks under thermodynamic control. The library of these reversibly interconverting building blocks is called a dynamic combinatorial library (DCL). All constituents in a DCL are in equilibrium, and their distribution is determined by their thermodynamic stability within the DCL. The interconversion of these building blocks may involve covalent or non-covalent interactions. When a DCL is exposed to an external influence, the equilibrium shifts and those components that interact with the external influence are stabilised and amplified, allowing more of the active compound to be formed.

In chemistry, metal aquo complexes are coordination compounds containing metal ions with only water as a ligand. These complexes are the predominant species in aqueous solutions of many metal salts, such as metal nitrates, sulfates, and perchlorates. They have the general stoichiometry [M(H2O)n]z+. Their behavior underpins many aspects of environmental, biological, and industrial chemistry. This article focuses on complexes where water is the only ligand, but of course many complexes are known to consist of a mix of aquo and other ligands.

<span class="mw-page-title-main">Capped octahedral molecular geometry</span>

In chemistry, the capped octahedral molecular geometry describes the shape of compounds where seven atoms or groups of atoms or ligands are arranged around a central atom defining the vertices of a gyroelongated triangular pyramid. This shape has C3v symmetry and is one of the three common shapes for heptacoordinate transition metal complexes, along with the pentagonal bipyramid and the capped trigonal prism.

<span class="mw-page-title-main">Transition metal alkyl complexes</span> Coordination complex

Transition metal alkyl complexes are coordination complexes that contain a bond between a transition metal and an alkyl ligand. Such complexes are not only pervasive but are of practical and theoretical interest.

Alexander von Zelewsky was a full Professor in chemistry at the University of Fribourg in Fribourg, Switzerland, from 1969 to 2006.

Transition metal amino acid complexes are a large family of coordination complexes containing the conjugate bases of the amino acids, the 2-aminocarboxylates. Amino acids are prevalent in nature, and all of them function as ligands toward the transition metals. Not included in this article are complexes of the amides and ester derivatives of amino acids. Also excluded are the polyamino acids including the chelating agents EDTA and NTA.

<span class="mw-page-title-main">Transition metal pyridine complexes</span>

Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.

<span class="mw-page-title-main">Transition metal azide complex</span>

Transition metal azide complexes are coordination complexes containing one or more azide (N3) ligands.

References

  1. 1 2 J.-M. Lehn et al., Angew. Chem., 2004, 116, S. 3728–3747.
  2. Ruben, Lehn, Chem. Commun., 2003, S. 1338–1339.
  3. Ruben et al., Chem. Eur. J., 2003, 9, S. 291–299.
  4. Müller, Lehn et al., Angew. Chem., 2005, 117, S. 8109–8113.
  5. Beves, Jonathon E.; Danon, Jonathan J.; Leigh, David A.; Lemonnier, Jean-François; Vitorica-Yrezabal, Iñigo J. (22 June 2015). "A Solomon Link through an Interwoven Molecular Grid". Angewandte Chemie International Edition. 54 (26): 7555–7559. doi: 10.1002/anie.201502095 . PMC   4479027 . PMID   25960366.
  6. Danon, Jonathan J.; Leigh, David A.; Pisano, Simone; Valero, Alberto; Vitorica-Yrezabal, Iñigo J. (15 October 2018). "A Six-Crossing Doubly Interlocked [2]Catenane with Twisted Rings, and a Molecular Granny Knot". Angewandte Chemie International Edition. 57 (42): 13833–13837. doi: 10.1002/anie.201807135 . PMC   6221036 . PMID   30152565.
  7. Leigh, David A.; Danon, Jonathan J.; Fielden, Stephen D. P.; Lemonnier, Jean-François; Whitehead, George F. S.; Woltering, Steffen L. (15 February 2021). "A molecular endless (74) knot". Nature Chemistry. 13 (2): 117–122. doi:10.1038/s41557-020-00594-x. S2CID   229163544.