HSTCP

Last updated

HighSpeed TCP (HSTCP) is a congestion control algorithm protocol defined in RFC 3649 for Transport Control Protocol (TCP). Standard TCP performs poorly in networks with a large bandwidth-delay product. It is unable to fully utilize available bandwidth. HSTCP makes minor modifications to standard TCP's congestion control mechanism to overcome this limitation.

Contents

Algorithm

When an ACK is received (in congestion avoidance), the window is increased by and when a loss is detected through triple duplicate acknowledgments, the window equals , where w is the current window size. When the congestion window is small, HSTCP behaves exactly like standard TCP so a(w) is 1 and b(w) is 0.5. When TCP's congestion window is beyond a certain threshold, a(w) and b(w) become functions of the current window size. In this region, as the congestion window increases, the value of a(w) increases and the value of b(w) decreases. This means that HSTCP's window will grow faster than standard TCP and also recover from losses more quickly. This behavior allows HSTCP to be friendly to standard TCP flows in normal networks and also to quickly utilize available bandwidth in networks with large bandwidth delay products.

HSTCP has the same slow start/timeout behavior as standard TCP.

Since only the congestion control mechanism is modified, HSTCP can be used with other TCP options like SACK. In real implementations, determining the increase and decrease parameters given a current window size is implemented as a lookup table.

See also

Related Research Articles

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport Layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

Network throughput refers to the rate of successful message delivery over a communication channel, such as Ethernet or packet radio, in a communication network.The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second, and sometimes in data packets per second or data packets per time slot.

Traffic shaping is a bandwidth management technique used on computer networks which delays some or all datagrams to bring them into compliance with a desired traffic profile. Traffic shaping is used to optimize or guarantee performance, improve latency, or increase usable bandwidth for some kinds of packets by delaying other kinds. It is often confused with traffic policing, the distinct but related practice of packet dropping and packet marking.

Network congestion in data networking and queueing theory is the reduced quality of service that occurs when a network node or link is carrying more data than it can handle. Typical effects include queueing delay, packet loss or the blocking of new connections. A consequence of congestion is that an incremental increase in offered load leads either only to a small increase or even a decrease in network throughput.

FAST TCP is a TCP congestion avoidance algorithm especially targeted at long-distance, high latency links, developed at the Netlab, California Institute of Technology and now being commercialized by FastSoft. FastSoft was acquired by Akamai Technologies in 2012.

Transmission Control Protocol (TCP) uses a network congestion-avoidance algorithm that includes various aspects of an additive increase/multiplicative decrease (AIMD) scheme, along with other schemes including slow start and congestion window (CWND), to achieve congestion avoidance. The TCP congestion-avoidance algorithm is the primary basis for congestion control in the Internet. Per the end-to-end principle, congestion control is largely a function of internet hosts, not the network itself. There are several variations and versions of the algorithm implemented in protocol stacks of operating systems of computers that connect to the Internet.

TCP Vegas is a TCP congestion avoidance algorithm that emphasizes packet delay, rather than packet loss, as a signal to help determine the rate at which to send packets. It was developed at the University of Arizona by Lawrence Brakmo and Larry L. Peterson and introduced in 1994.

TCP Westwood (TCPW) is a sender-side-only modification to TCP New Reno that is intended to better handle large bandwidth-delay product paths, with potential packet loss due to transmission or other errors, and with dynamic load.

TCP tuning techniques adjust the network congestion avoidance parameters of Transmission Control Protocol (TCP) connections over high-bandwidth, high-latency networks. Well-tuned networks can perform up to 10 times faster in some cases. However, blindly following instructions without understanding their real consequences can hurt performance as well.

In data communications, the bandwidth-delay product is the product of a data link's capacity and its round-trip delay time. The result, an amount of data measured in bits, is equivalent to the maximum amount of data on the network circuit at any given time, i.e., data that has been transmitted but not yet acknowledged. The bandwidth-delay product was originally proposed as a rule of thumb for sizing router buffers in conjunction with congestion avoidance algorithm Random Early Detection (RED).

The additive-increase/multiplicative-decrease (AIMD) algorithm is a feedback control algorithm best known for its use in TCP congestion control. AIMD combines linear growth of the congestion window when there is no congestion with an exponential reduction when congestion is detected. Multiple flows using AIMD congestion control will eventually converge to an equal usage of a shared link. The related schemes of multiplicative-increase/multiplicative-decrease (MIMD) and additive-increase/additive-decrease (AIAD) do not reach stability.

BIC TCP is one of the congestion control algorithms that can be used for Transmission Control Protocol (TCP). BIC is optimized for high speed networks with high latency: so-called "long fat networks". For these networks, BIC has significant advantage over previous congestion control schemes in correcting for severely underutilized bandwidth.

UDP-based Data Transfer Protocol (UDT), is a high-performance data transfer protocol designed for transferring large volumetric datasets over high-speed wide area networks. Such settings are typically disadvantageous for the more common TCP protocol.

Bandwidth management is the process of measuring and controlling the communications on a network link, to avoid filling the link to capacity or overfilling the link, which would result in network congestion and poor performance of the network. Bandwidth is described by bit rate and measured in units of bits per second (bit/s) or bytes per second (B/s).

Compound TCP (CTCP) is a Microsoft algorithm that was introduced as part of the Windows Vista and Window Server 2008 TCP stack. It is designed to aggressively adjust the sender's congestion window to optimise TCP for connections with large bandwidth-delay products while trying not to harm fairness. It is also available for Linux, as well as for Windows XP and Windows Server 2003 via a hotfix.

H-TCP is another implementation of TCP with an optimized congestion control algorithm for high speed networks with high latency. It was created by researchers at the Hamilton Institute in Ireland.

The TCP window scale option is an option to increase the receive window size allowed in Transmission Control Protocol above its former maximum value of 65,535 bytes. This TCP option, along with several others, is defined in RFC 7323 which deals with long fat networks (LFNs).

CUBIC is a network congestion avoidance algorithm for TCP which can achieve high bandwidth connections over networks more quickly and reliably in the face of high latency than earlier algorithms. It helps optimize long fat networks.

Zeta-TCP refers to a set of proprietary Transmission Control Protocol (TCP) algorithms targeted to improve the end-to-end performance of TCP, regardless of whether the peer is Zeta-TCP or any other TCP protocol stack, in other words, to be compatible with the existing TCP algorithms. It was designed and implemented by AppEx Networks Corporation.

CoDel is an active queue management (AQM) algorithm in network routing, developed by Van Jacobson and Kathleen Nichols and published as RFC8289. It is designed to overcome bufferbloat in networking hardware, such as routers, by setting limits on the delay network packets experience as they pass through buffers in this equipment. CoDel aims to improve on the overall performance of the random early detection (RED) algorithm by addressing some of its fundamental misconceptions, as perceived by Jacobson, and by being easier to manage.

References