Retransmission (data networks)

Last updated

Retransmission, essentially identical with automatic repeat request (ARQ), is the resending of packets which have been either damaged or lost. Retransmission is one of the basic mechanisms used by protocols operating over a packet switched computer network to provide reliable communication (such as that provided by a reliable byte stream, for example TCP).

Contents

Such networks are usually "unreliable", meaning they offer no guarantees that they will not delay, damage, or lose packets, or deliver them out of order. Protocols which provide reliable communication over such networks use a combination of acknowledgments (i.e. an explicit receipt from the destination of the data), retransmission of missing or damaged packets (usually initiated by a time-out), and checksums to provide that reliability.

Acknowledgment

There are several forms of acknowledgement which can be used alone or together in networking protocols:

Retransmission

Retransmission is a very simple concept. Whenever one party sends something to the other party, it retains a copy of the data it sent until the recipient has acknowledged that it received it. In a variety of circumstances the sender automatically retransmits the data using the retained copy. Reasons for resending include:

See also

Related Research Articles

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport Layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

In computer networking, the User Datagram Protocol (UDP) is one of the core communication protocols of the Internet protocol suite used to send messages to other hosts on an Internet Protocol (IP) network. Within an IP network, UDP does not require prior communication to set up communication channels or data paths.

Automatic repeat request (ARQ), also known as automatic repeat query, is an error-control method for data transmission that uses acknowledgements and timeouts to achieve reliable data transmission over an unreliable communication channel. ARQ is appropriate if the communication channel has varying or unknown capacity. If the sender does not receive an acknowledgment before the timeout, it re-transmits the message until it receives an acknowledgment or exceeds a predefined number of retransmissions.

In computing, a handshake is a signal between two devices or programs, used to, e.g., authenticate, coordinate. An example is the handshaking between a hypervisor and an application in a guest virtual machine.

<span class="mw-page-title-main">Transport layer</span> Layer in the OSI and TCP/IP models providing host-to-host communication services for applications

In computer networking, the transport layer is a conceptual division of methods in the layered architecture of protocols in the network stack in the Internet protocol suite and the OSI model. The protocols of this layer provide end-to-end communication services for applications. It provides services such as connection-oriented communication, reliability, flow control, and multiplexing.

Explicit Congestion Notification (ECN) is an extension to the Internet Protocol and to the Transmission Control Protocol and is defined in RFC 3168 (2001). ECN allows end-to-end notification of network congestion without dropping packets. ECN is an optional feature that may be used between two ECN-enabled endpoints when the underlying network infrastructure also supports it.

In computer networking, the Datagram Congestion Control Protocol (DCCP) is a message-oriented transport layer protocol. DCCP implements reliable connection setup, teardown, Explicit Congestion Notification (ECN), congestion control, and feature negotiation. The IETF published DCCP as RFC 4340, a proposed standard, in March 2006. RFC 4336 provides an introduction.

Transmission Control Protocol (TCP) uses a congestion control algorithm that includes various aspects of an additive increase/multiplicative decrease (AIMD) scheme, along with other schemes including slow start and congestion window (CWND), to achieve congestion avoidance. The TCP congestion-avoidance algorithm is the primary basis for congestion control in the Internet. Per the end-to-end principle, congestion control is largely a function of internet hosts, not the network itself. There are several variations and versions of the algorithm implemented in protocol stacks of operating systems of computers that connect to the Internet.

Selective Repeat ARQ/Selective Reject ARQ is a specific instance of the automatic repeat request (ARQ) protocol used to manage sequence numbers and retransmissions in reliable communications.

TCP tuning techniques adjust the network congestion avoidance parameters of Transmission Control Protocol (TCP) connections over high-bandwidth, high-latency networks. Well-tuned networks can perform up to 10 times faster in some cases. However, blindly following instructions without understanding their real consequences can hurt performance as well.

<span class="mw-page-title-main">Sorcerer's Apprentice Syndrome</span> Network protocol flaw in the original versions of TFTP

Sorcerer's Apprentice Syndrome (SAS) is a network protocol flaw in the original versions of TFTP. It was named after Goethe's 1797 poem "Der Zauberlehrling", because the details of its operation closely resemble the disaster that befalls the sorcerer's apprentice: the problem resulted in an ever-growing replication of every packet in the transfer.

Packet loss occurs when one or more packets of data travelling across a computer network fail to reach their destination. Packet loss is either caused by errors in data transmission, typically across wireless networks, or network congestion. Packet loss is measured as a percentage of packets lost with respect to packets sent.

Fault Tolerant Messaging in the context of computer systems and networks, refers to a design approach and set of techniques aimed at ensuring reliable and continuous communication between components or nodes even in the presence of errors or failures. This concept is especially critical in distributed systems, where components may be geographically dispersed and interconnected through networks, making them susceptible to various potential points of failure.

A sliding window protocol is a feature of packet-based data transmission protocols. Sliding window protocols are used where reliable in-order delivery of packets is required, such as in the data link layer as well as in the Transmission Control Protocol (TCP). They are also used to improve efficiency when the channel may include high latency.

A reliable byte stream is a common service paradigm in computer networking; it refers to a byte stream in which the bytes which emerge from the communication channel at the recipient are exactly the same, and in exactly the same order, as they were when the sender inserted them into the channel.

Karn's algorithm addresses the problem of getting accurate estimates of the round-trip time for messages when using the Transmission Control Protocol (TCP) in computer networking. The algorithm, also sometimes termed as the Karn-Partridge algorithm was proposed in a paper by Phil Karn and Craig Partridge in 1987.

A communication protocol is a system of rules that allows two or more entities of a communications system to transmit information via any variation of a physical quantity. The protocol defines the rules, syntax, semantics, and synchronization of communication and possible error recovery methods. Protocols may be implemented by hardware, software, or a combination.

In data networking, telecommunications, and computer buses, an acknowledgment (ACK) is a signal that is passed between communicating processes, computers, or devices to signify acknowledgment, or receipt of message, as part of a communications protocol. The negative-acknowledgement is a signal that is sent to reject a previously received message or to indicate some kind of error. Acknowledgments and negative acknowledgments inform a sender of the receiver's state so that it can adjust its own state accordingly.

The Stream Control Transmission Protocol (SCTP) is a computer networking communications protocol in the transport layer of the Internet protocol suite. Originally intended for Signaling System 7 (SS7) message transport in telecommunication, the protocol provides the message-oriented feature of the User Datagram Protocol (UDP), while ensuring reliable, in-sequence transport of messages with congestion control like the Transmission Control Protocol (TCP). Unlike UDP and TCP, the protocol supports multihoming and redundant paths to increase resilience and reliability.

NACK-Oriented Reliable Multicast (NORM) is a transport layer Internet protocol designed to provide reliable transport in multicast groups in data networks. It is formally defined by the Internet Engineering Task Force (IETF) in Request for Comments (RFC) 5740, which was published in November 2009.