The topic of this article may not meet Wikipedia's notability guidelines for products and services .(April 2012) |
This article needs additional citations for verification .(April 2012) |
HTK (Hidden Markov Model Toolkit) is a proprietary software toolkit for handling HMMs. It is mainly intended for speech recognition, but has been used in many other pattern recognition applications that employ HMMs, including speech synthesis, character recognition and DNA sequencing.
Originally developed at the Machine Intelligence Laboratory (formerly known as the Speech Vision and Robotics Group) of the Cambridge University Engineering Department (CUED), HTK is now being widely used among researchers who are working on HMMs.
Speech recognition is an interdisciplinary subfield of computer science and computational linguistics that develops methodologies and technologies that enable the recognition and translation of spoken language into text by computers. It is also known as automatic speech recognition (ASR), computer speech recognition or speech-to-text (STT). It incorporates knowledge and research in the computer science, linguistics and computer engineering fields. The reverse process is speech synthesis.
Speech synthesis is the artificial production of human speech. A computer system used for this purpose is called a speech synthesizer, and can be implemented in software or hardware products. A text-to-speech (TTS) system converts normal language text into speech; other systems render symbolic linguistic representations like phonetic transcriptions into speech. The reverse process is speech recognition.
A hidden Markov model (HMM) is a Markov model in which the observations are dependent on a latent Markov process. An HMM requires that there be an observable process whose outcomes depend on the outcomes of in a known way. Since cannot be observed directly, the goal is to learn about state of by observing . By definition of being a Markov model, an HMM has an additional requirement that the outcome of at time must be "influenced" exclusively by the outcome of at and that the outcomes of and at must be conditionally independent of at given at time . Estimation of the parameters in an HMM can be performed using maximum likelihood estimation. For linear chain HMMs, the Baum–Welch algorithm can be used to estimate parameters.
A speech disfluency, also spelled speech dysfluency, is any of various breaks, irregularities, or non-lexical vocables which occur within the flow of otherwise fluent speech. These include "false starts", i.e. words and sentences that are cut off mid-utterance; phrases that are restarted or repeated, and repeated syllables; "fillers", i.e. grunts, and non-lexical or semiarticulate utterances such as huh, uh, erm, um, and hmm, and, in English, well, so, I mean, and like; and "repaired" utterances, i.e. instances of speakers correcting their own slips of the tongue or mispronunciations. Huh is claimed to be a universal syllable.
In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step.
The Natural Language Toolkit, or more commonly NLTK, is a suite of libraries and programs for symbolic and statistical natural language processing (NLP) for English written in the Python programming language. It supports classification, tokenization, stemming, tagging, parsing, and semantic reasoning functionalities. It was developed by Steven Bird and Edward Loper in the Department of Computer and Information Science at the University of Pennsylvania. NLTK includes graphical demonstrations and sample data. It is accompanied by a book that explains the underlying concepts behind the language processing tasks supported by the toolkit, plus a cookbook.
Bitext word alignment or simply word alignment is the natural language processing task of identifying translation relationships among the words in a bitext, resulting in a bipartite graph between the two sides of the bitext, with an arc between two words if and only if they are translations of one another. Word alignment is typically done after sentence alignment has already identified pairs of sentences that are translations of one another.
CMU Sphinx, also called Sphinx for short, is the general term to describe a group of speech recognition systems developed at Carnegie Mellon University. These include a series of speech recognizers and an acoustic model trainer (SphinxTrain).
Julius is a speech recognition engine, specifically a high-performance, two-pass large vocabulary continuous speech recognition (LVCSR) decoder software for speech-related researchers and developers. It can perform almost real-time computing (RTC) decoding on most current personal computers (PCs) in 60k word dictation task using word trigram (3-gram) and context-dependent Hidden Markov model (HMM). Major search methods are fully incorporated.
VoxForge is a free speech corpus and acoustic model repository for open source speech recognition engines.
An acoustic model is used in automatic speech recognition to represent the relationship between an audio signal and the phonemes or other linguistic units that make up speech. The model is learned from a set of audio recordings and their corresponding transcripts. It is created by taking audio recordings of speech, and their text transcriptions, and using software to create statistical representations of the sounds that make up each word.
As of the early 2000s, several speech recognition (SR) software packages exist for Linux. Some of them are free and open-source software and others are proprietary software. Speech recognition usually refers to software that attempts to distinguish thousands of words in a human language. Voice control may refer to software used for communicating operational commands to a computer.
Tk is a cross-platform widget toolkit that provides a library of basic elements of GUI widgets for building a graphical user interface (GUI) in many programming languages. It is free and open-source software released under a BSD-style software license.
RWTH ASR is a proprietary speech recognition toolkit.
Janus Recognition Toolkit (JRTk), sometimes referred to as Janus, is a general purpose speech recognition toolkit developed and maintained by the Interactive Systems Laboratories at Carnegie Mellon University and Karlsruhe Institute of Technology. It is useful for both research and application development and is part of the JANUS speech-to-speech translation system.
Kaldi is an open-source speech recognition toolkit written in C++ for speech recognition and signal processing, freely available under the Apache License v2.0.
In signal processing, Feature space Maximum Likelihood Linear Regression (fMLLR) is a global feature transform that are typically applied in a speaker adaptive way, where fMLLR transforms acoustic features to speaker adapted features by a multiplication operation with a transformation matrix. In some literature, fMLLR is also known as the Constrained Maximum Likelihood Linear Regression (cMLLR).
Stephen John Young is a British researcher, Professor of Information Engineering at the University of Cambridge and an entrepreneur. He is one of the pioneers of automated speech recognition and statistical spoken dialogue systems. He served as the Senior Pro-Vice-Chancellor of the University of Cambridge from 2009 to 2015, responsible for planning and resources. From 2015 to 2019, he held a joint appointment between his professorship at Cambridge and Apple, where he was a senior member of the Siri development team.
openSMILE is source-available software for automatic extraction of features from audio signals and for classification of speech and music signals. "SMILE" stands for "Speech & Music Interpretation by Large-space Extraction". The software is mainly applied in the area of automatic emotion recognition and is widely used in the affective computing research community. The openSMILE project exists since 2008 and is maintained by the German company audEERING GmbH since 2013. openSMILE is provided free of charge for research purposes and personal use under a source-available license. For commercial use of the tool, the company audEERING offers custom license options.