Hallade method

Last updated
Sine, cosine, and versine of th in terms of a unit circle, centered at O Versine.svg
Sine, cosine, and versine of θ in terms of a unit circle, centered at O

The Hallade method, devised by Frenchman Emile Hallade, is a method used in track geometry for surveying, designing and setting out curves in railway track. [1]

Contents

It involves measuring the offset of a string line from the outside of a curve at the central point of a chord. In reality, string is too thick to provide a clear reading and breaks easily under the tension needed to minimise movement due to wind. A reel of wire may be used instead, with special holders (Hallade forks) employed to hold the wire at a fixed distance from the rail. The measurement is taken with a Hallade rule, a specialist ruler whose zero point matches the offset of the forks, thus cancelling it out. The purpose of the offset is to allow small negative measurements. Without this, surveyors would frequently have to read from both sides of the rail to determine the correct values on straight sections of track which typically feature a mix of small positive and negative versines.

A standard chord length is used: in the UK this is conventionally 30 metres, or sometimes 20 metres. Half chords, i.e. 15 metre or 10 metre intervals, are marked on the datum rail using chalk. The string, which is one full chord long, is then held taut with one end on two marks at each end of a chord, and the offset at the half chord mark measured.

The versine of the chord, which is equal to this measured offset value can be calculated using the approximation of:

which is:

where
= versine (m),
= chord length (m),
= radius of curve (m)

This formula is also true for other units of measurement such as in feet. The relationship of versine, chord and radius is derived from the Pythagorean theorem. Based on the diagram on the right:

We can replace OC with r (radius) minus v, OA with r and AC with L/2 (half a chord). Then the rearrange formula to:

Since the curved tracks are usually large, the result of v/2 is very small. To simplify the formula, the approximation is:

The following can be used to find the versine of a given constant radius curve: [2]

The Hallade method is to use the chord to continuously measure the versine in an overlapping pattern along the curve. The versine values for the perfect circular curve would have the same number. [3] By comparing the surveyed versine figures to the design versines, this can then be used to determine what slues should be applied to the track in order to make the curve correctly aligned. This is often done using pegs which are driven into the ground in the cess beside the track to be aligned. The process of putting the pegs in the correct positions is known as 'setting out'. If the curve needs to be of a desired constant radius, which will usually be determined by physical obstructions and the degree of cant which is permitted, the versine can be calculated for the desired radius using this approximation. In practice, many track curves are transition curves and so have changing radii. In order to maintain a smooth transition, the differences in versines between consecutive half chords are measured and minimised.

The Hallade survey is a survey method that uses the same principle to measure the versines along an existing curve. Based on the versine values, the radius of that circular curved track can be approximated to: [4]

This method can be done manually, and this method is still used in the UK. However, due to the complexity of the calculations over long lengths of track, it is now often done by computer, [5] with the track geometry data being loaded straight onto a computer controlled tamping and lining machine for implementation.

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius.

<span class="mw-page-title-main">Parabola</span> Plane curve: conic section

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

<span class="mw-page-title-main">Gaussian beam</span> Monochrome light beam whose amplitude envelope is a Gaussian function

In optics, a Gaussian beam is an idealized beam of electromagnetic radiation whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. This fundamental (or TEM00) transverse Gaussian mode describes the intended output of many lasers, as such a beam diverges less and can be focused better than any other. When a Gaussian beam is refocused by an ideal lens, a new Gaussian beam is produced. The electric and magnetic field amplitude profiles along a circular Gaussian beam of a given wavelength and polarization are determined by two parameters: the waistw0, which is a measure of the width of the beam at its narrowest point, and the position z relative to the waist.

<span class="mw-page-title-main">Horizon</span> Apparent curve that separates earth from sky

The horizon is the apparent curve that separates the surface of a celestial body from its sky when viewed from the perspective of an observer on or near the surface of the relevant body. This curve divides all viewing directions based on whether it intersects the relevant body's surface or not.

<span class="mw-page-title-main">Circular segment</span> Slice of a circle cut perpendicular to the radius

In geometry, a circular segment, also known as a disk segment, is a region of a disk which is "cut off" from the rest of the disk by a secant or a chord. More formally, a circular segment is a region of two-dimensional space that is bounded by a circular arc and by the circular chord connecting the endpoints of the arc.

<span class="mw-page-title-main">Versine</span> 1 minus the cosine of an angle

The versine or versed sine is a trigonometric function found in some of the earliest trigonometric tables. The versine of an angle is 1 minus its cosine.

<span class="mw-page-title-main">Close-packing of equal spheres</span> Dense arrangement of congruent spheres in an infinite, regular arrangement

In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement. Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is

<span class="mw-page-title-main">Spherical cap</span> Section of a sphere

In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere, so that the height of the cap is equal to the radius of the sphere, the spherical cap is called a hemisphere.

Degree of curve or degree of curvature is a measure of curvature of a circular arc used in civil engineering for its easy use in layout surveying.

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

<span class="mw-page-title-main">Circular sector</span> Portion of a disk enclosed by two radii and an arc

A circular sector, also known as circle sector or disk sector or simply a sector, is the portion of a disk enclosed by two radii and an arc, with the smaller area being known as the minor sector and the larger being the major sector. In the diagram, θ is the central angle, the radius of the circle, and is the arc length of the minor sector.

<span class="mw-page-title-main">Circular arc</span> Part of a circle between two points

A circular arc is the arc of a circle between a pair of distinct points. If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians ; and the other arc, the major arc, subtends an angle greater than π radians. The arc of a circle is defined as the part or segment of the circumference of a circle. A straight line that connects the two ends of the arc is known as a chord of a circle. If the length of an arc is exactly half of the circle, it is known as a semicircular arc.

<span class="mw-page-title-main">Steinmetz solid</span> Intersection of cylinders

In geometry, a Steinmetz solid is the solid body obtained as the intersection of two or three cylinders of equal radius at right angles. Each of the curves of the intersection of two cylinders is an ellipse.

The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation.

<span class="mw-page-title-main">Euler spiral</span> Curve whose curvature changes linearly

An Euler spiral is a curve whose curvature changes linearly with its curve length. This curve is also referred to as a clothoid or Cornu spiral. The behavior of Fresnel integrals can be illustrated by a Euler spiral, a connection first made by Alfred Marie Cornu 1874. Euler's spiral is a type of superspiral that has the property of a monotonic curvature function.

<span class="mw-page-title-main">Minimum railway curve radius</span> Shortest allowable design radius for the centerline of railway tracks

The minimum railway curve radius is the shortest allowable design radius for the centerline of railway tracks under a particular set of conditions. It has an important bearing on construction costs and operating costs and, in combination with superelevation in the case of train tracks, determines the maximum safe speed of a curve. The minimum radius of a curve is one parameter in the design of railway vehicles as well as trams; monorails and automated guideways are also subject to a minimum radius.

<span class="mw-page-title-main">Pentagon</span> Shape with five sides

In geometry, a pentagon is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

<span class="mw-page-title-main">Bicentric quadrilateral</span> Convex, 4-sided shape with an incircle and a circumcircle

In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral.

<span class="mw-page-title-main">Sagitta (geometry)</span>

In geometry, the sagitta of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror or lens. The name comes directly from Latin sagitta, meaning an "arrow".

In mathematics, Bhāskara I's sine approximation formula is a rational expression in one variable for the computation of the approximate values of the trigonometric sines discovered by Bhāskara I, a seventh-century Indian mathematician. This formula is given in his treatise titled Mahabhaskariya. It is not known how Bhāskara I arrived at his approximation formula. However, several historians of mathematics have put forward different hypotheses as to the method Bhāskara might have used to arrive at his formula. The formula is elegant and simple, and it enables the computation of reasonably accurate values of trigonometric sines without the use of geometry.

References

  1. Iwnicki, Simon (2006). Handbook of Railway Vehicle Dynamics. CRC Press. p. 448. ISBN   0-8493-3321-0.
  2. Ellis, Iain (1998). The Hallade training manual (PDF).
  3. Ellis, compiled by Iain (2006). Ellis' British railway engineering encyclopaedia: being a compendious reference of specialist engineering terms in common use upon the Railways of Britain. Raleigh, North Carolina: Lulu. p. 160. ISBN   978-1-84728-643-7 . Retrieved 22 November 2012.
  4. Camp, Walter Mason (1904). Notes on track - Construction and Maintenance (Second Edition, Revised ed.). Auburn Park, Chicago: Walter Mason Camp. p.  232 . Retrieved 22 November 2012.
  5. "Rail Software" . Retrieved 7 June 2010.