(In the automation and engineering environments, the hardware engineer or architect encompasses the electronics engineering and electrical engineering fields, with subspecialities in analog, digital, or electromechanical systems.)
The hardware systems architect or hardware architect is responsible for:
Large systems architecture was developed as a way to handle systems too large for one person to conceive of, let alone design. Systems of this size are rapidly becoming the norm, so architectural approaches and architects are increasingly needed to solve the problems of large systems.
Engineers as a group do not have a reputation for understanding and responding to human needs comfortably or for developing humanly functional and aesthetically pleasing products. Architects are expected to understand human needs and develop humanly functional and aesthetically pleasing products. A good architect is a translator between the user/sponsor and the engineers—and even among just engineers of different specialties. A good architect is also the principal keeper of the user's vision of the end product—and of the process of deriving requirements from and implementing that vision.
Determining what the users/sponsors actually want, rather than what they say they want, is not engineering—it is an art. An architect does not follow an exact procedure. S/he communicates with users/sponsors in a highly interactive way—together they extract the true requirements necessary for the engineered system. The hardware architect must remain constantly in communication with the end users (or a systems architect). Therefore, the architect must be familiar with the user's environment and problem. The engineer need only be very knowledgeable of the potential engineering solution space.
The user/sponsor should view the architect as the user's representative and provide all input through the architect. Direct interaction with project engineers is generally discouraged as the chance of mutual misunderstanding is very high. The user requirements' specification should be a joint product of the user and hardware architect (or, the systems and hardware architects): the user brings his needs and wish list, the architect brings knowledge of what is likely to prove doable within cost and time constraints. When the user needs are translated into a set of high level requirements is also the best time to write the first version of the acceptance test, which should, thereafter, be religiously kept up to date with the requirements. That way, the user will be absolutely clear about what s/he is getting. It is also a safeguard against untestable requirements, misunderstandings, and requirements creep.
The development of the first level of hardware engineering requirements is not a purely analytical exercise and should also involve both the hardware architect and engineer. If any compromises are to be made—to meet constraints like cost, schedule, power, or space, the architect must ensure that the final product and overall look and feel do not stray very far from the user's intent. The engineer should focus on developing a design that optimizes the constraints but ensures a workable and reliable product. The architect is primarily concerned with the comfort and usability of the product; the engineer is primarily concerned with the producibility and utility of the product.
The provision of needed services to the user is the true function of an engineered system. However, as systems become ever larger and more complex, and as their emphases move away from simple hardware components, the narrow application of traditional hardware development principles is found to be insufficient—the application of the more general principles of hardware architecture to the design of (sub) systems is seen to be needed. A Hardware architecture is also a simplified model of the finished end product—its primary function is to define the hardware components and their relationships to each other so that the whole can be seen to be a consistent, complete, and correct representation of what the user had in mind—especially for the computer–human interface. It is also used to ensure that the components fit together and relate in the desired way.
It is necessary to distinguish between the architecture of the user's world and the engineered hardware architecture. The former represents and addresses problems and solutions in the user's world. It is principally captured in the computer–human interfaces (CHI) of the engineered system. The engineered system represents the engineering solutions—how the engineer proposes to develop and/or select and combine the components of the technical infrastructure to support the CHI. In the absence of an architect, there is an unfortunate tendency to confuse the two architectures, since the engineer thinks in terms of hardware, but the user may be thinking in terms of solving a problem of getting people from point A to point B in a reasonable amount of time and with a reasonable expenditure of energy, or of getting needed information to customers and staff. A hardware architect is expected to combine knowledge of both the architecture of the user's world and of (all potentially useful) hardware engineering architectures. The former is a joint activity with the user; the latter is a joint activity with the engineers. The product is a set of high level requirements reflecting the user's requirements which can be used by the engineers to develop hardware systems design requirements.
Because requirements evolve over the course of a project, especially a long one, an architect is needed until the hardware system is accepted by the user: the architect is the best insurance that no changes and interpretations made during the course of development compromise the user's viewpoint.
Most hardware engineers are specialists. They know the applications of hardware design and development intimately, apply their knowledge to practical situations—that is, solve real world problems, evaluate the cost–benefits of various solutions within their hardware specialty, and ensure the correct operation of whatever they design. Hardware architects are generalists. They are not expected to be experts in any one hardware technology or approach, but are expected to be knowledgeable of many, and able to judge their applicability to specific situations. They also apply their knowledge to practical situations, but evaluate the cost/benefits of various solutions using different hardware technologies, for example, specially developed versus commercially available hardware components, and assure that the system as a whole performs according to the user's expectations.
Many commercial-off-the-shelf or already developed hardware components may be selected independently according to constraints such as cost, response, throughput, etc. In some cases, the architect can already assemble the end system unaided. Or, s/he may still need the help of a hardware engineer to select components and to design and build any special purpose function. The architects (or engineers) may also enlist the aid of specialists—in safety, security, communications, special purpose hardware, graphics, human factors, test and evaluation, quality control, RMA, interface management, etc. An effective hardware architectural team must have immediate access to specialists in critical specialties.
An architect planning a building works on the overall design, making sure it will be pleasing and useful to its inhabitants. While a single architect by himself may be enough to build a single-family house, many engineers may be needed, in addition, to solve the detailed problems that arise when a novel high-rise building is designed. If the job is large and complex enough, parts of the architecture may be designed as components. That is, if we are building a housing complex, we may have one architect for the complex, and one for each type of building, as part of an architectural team.
Large hardware systems also require an architect and much engineering talent. If the engineered system is large and complex enough, the chief hardware systems architect may defer to subordinate architects for parts of the job, although they all may be members of a joint architectural team. But the architect must never be viewed as an engineering supervisor.
The architect should sub-allocate the hardware requirements to major components or subsystems that are within the scope of a single hardware engineer, or engineering manager or subordinate architect. Ideally, each such hardware component/subsystem is a sufficiently stand-alone object that it can be tested as a complete component, separate from the whole, using only a simple testbed to supply simulated inputs and record outputs. That is, it is not necessary to know how an air traffic control system works in order to design and build a data management subsystem for it. It is only necessary to know the constraints under which the subsystem will be expected to operate.
A good architect ensures that the system, however complex, is built upon relatively simple and "clean" concepts for each (sub) system or layer—easily understandable by everyone, especially the user, without special training. The architect will use a minimum of rules to ensure that each partition is well-defined and clean of kludges, work-arounds, short-cuts, or confusing detail and exceptions. As user needs evolve, (once the system is fielded and in use), it is a lot easier subsequently to evolve a simple concept than one laden with exceptions, special cases, and much "fine print."
Layering the hardware architecture is important for keeping it sufficiently simple at each layer so that it remains comprehensible to a single mind. As layers are ascended, whole systems at lower layers become simple components at the higher layers, and may disappear altogether at the highest layers.
The acceptance test always remains the principal responsibility of the architect(s). It is the chief means by which the architect will prove to the user that the hardware is as originally planned and that all subordinate architects and engineers have met their objectives. Large projects tend to be dynamic, with changes along the way needed by the user (e.g., as his problems change), or expected of the user (e.g., for cost or schedule reasons). But acceptance tests must be kept current at all times. They are the principal means by which the user is kept informed as to how the final product will perform. And they act as the principal goal towards which all subordinate personnel must design, build and test for.
A building architect uses sketches, models, drawings. A hardware systems architect should use sketches, models, and prototypes to discuss different solutions and results with the user or system architect, engineers, and subordinate architects. An early, draft version of the user's manual is invaluable, especially in conjunction with a prototype. A set of (engineering) requirements as a means of communicating with the users is explicitly to be avoided. A well written set of requirements, or specification, is intelligible only to the engineering fraternity, much as a legal contract is for lawyers.
In computing, a legacy system is an old method, technology, computer system, or application program, "of, relating to, or being a previous or outdated computer system", yet still in use. Often referencing a system as "legacy" means that it paved the way for the standards that would follow it. This can also imply that the system is out of date or in need of replacement.
An embedded system is a specialized computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.
Software design is the process of conceptualizing how a software system will work before it is implemented or modified. Software design also refers to the direct result of the design process – the concepts of how the software will work which consists of both design documentation and undocumented concepts.
Software development is the process used to create software. Programming and maintaining the source code is the central step of this process, but it also includes conceiving the project, evaluating its feasibility, analyzing the business requirements, software design, testing, to release. Software engineering, in addition to development, also includes project management, employee management, and other overhead functions. Software development may be sequential, in which each step is complete before the next begins, but iterative development methods where multiple steps can be executed at once and earlier steps can be revisited have also been devised to improve flexibility, efficiency, and scheduling.
In systems engineering and software engineering, requirements analysis focuses on the tasks that determine the needs or conditions to meet the new or altered product or project, taking account of the possibly conflicting requirements of the various stakeholders, analyzing, documenting, validating, and managing software or system requirements.
In engineering, a requirement is a condition that must be satisfied for the output of a work effort to be acceptable. It is an explicit, objective, clear and often quantitative description of a condition to be satisfied by a material, design, product, or service.
In systems engineering, information systems and software engineering, the systems development life cycle (SDLC), also referred to as the application development life cycle, is a process for planning, creating, testing, and deploying an information system. The SDLC concept applies to a range of hardware and software configurations, as a system can be composed of hardware only, software only, or a combination of both. There are usually six stages in this cycle: requirement analysis, design, development and testing, implementation, documentation, and evaluation.
A software requirements specification (SRS) is a description of a software system to be developed. It is modeled after the business requirements specification (CONOPS). The software requirements specification lays out functional and non-functional requirements, and it may include a set of use cases that describe user interactions that the software must provide to the user for perfect interaction.
Software prototyping is the activity of creating prototypes of software applications, i.e., incomplete versions of the software program being developed. It is an activity that can occur in software development and is comparable to prototyping as known from other fields, such as mechanical engineering or manufacturing.
Computer-aided production engineering (CAPE) is a relatively new and significant branch of engineering. Global manufacturing has changed the environment in which goods are produced. Meanwhile, the rapid development of electronics and communication technologies has required design and manufacturing to keep pace.
Spacecraft design is a process where systems engineering principles are systemically applied in order to construct complex vehicles for missions involving travel, operation or exploration in outer space. This design process produces the detailed design specifications, schematics, and plans for the spacecraft system, including comprehensive documentation outlining the spacecraft's architecture, subsystems, components, interfaces, and operational requirements, and potentially some prototype models or simulations, all of which taken together serve as the blueprint for manufacturing, assembly, integration, and testing of the spacecraft to ensure that it meets mission objectives and performance criteria.
Requirements management is the process of documenting, analyzing, tracing, prioritizing and agreeing on requirements and then controlling change and communicating to relevant stakeholders. It is a continuous process throughout a project. A requirement is a capability to which a project outcome should conform.
A systems integrator is a person or company that specializes in bringing together component subsystems into a whole and ensuring that those subsystems function together, a practice known as system integration. They also solve problems of automation. Systems integrators may work in many fields but the term is generally used in the information technology (IT) field such as computer networking, the defense industry, the mass media, enterprise application integration, business process management or manual computer programming. Data quality issues are an important part of the work of systems integrators.
The systems architect is an information and communications technology professional. Systems architects define the architecture of a computerized system in order to fulfill certain requirements. Such definitions include: a breakdown of the system into components, the component interactions and interfaces, and the technologies and resources to be used in its design and implementation.
A software factory is a structured collection of related software assets that aids in producing computer software applications or software components according to specific, externally defined end-user requirements through an assembly process. A software factory applies manufacturing techniques and principles to software development to mimic the benefits of traditional manufacturing. Software factories are generally involved with outsourced software creation.
A system architecture is the conceptual model that defines the structure, behavior, and more views of a system. An architecture description is a formal description and representation of a system, organized in a way that supports reasoning about the structures and behaviors of the system.
In engineering, hardware architecture refers to the identification of a system's physical components and their interrelationships. This description, often called a hardware design model, allows hardware designers to understand how their components fit into a system architecture and provides to software component designers important information needed for software development and integration. Clear definition of a hardware architecture allows the various traditional engineering disciplines to work more effectively together to develop and manufacture new machines, devices and components.
System integration testing (SIT) involves the overall testing of a complete system of many subsystem components or elements. The system under test may be composed of electromechanical or computer hardware, or software, or hardware with embedded software, or hardware/software with human-in-the-loop testing. SIT is typically performed on a larger integrated system of components and subassemblies that have previously undergone subsystem testing.
A view model or viewpoints framework in systems engineering, software engineering, and enterprise engineering is a framework which defines a coherent set of views to be used in the construction of a system architecture, software architecture, or enterprise architecture. A view is a representation of the whole system from the perspective of a related set of concerns.
ARCADIA is a system and software architecture engineering method based on architecture-centric and model-driven engineering activities.