Hardware architecture

Last updated
An orthographically projected diagram of the F-117A Nighthawk. Lockheed F-117A Nighthawk.svg
An orthographically projected diagram of the F-117A Nighthawk.
An F-117 conducts a live exercise bombing run using GBU-27 laser-guided bombs. F-117A GBU-28.JPEG
An F-117 conducts a live exercise bombing run using GBU-27 laser-guided bombs.

In engineering, hardware architecture refers to the identification of a system's physical components and their interrelationships. This description, often called a hardware design model, allows hardware designers to understand how their components fit into a system architecture and provides to software component designers important information needed for software development and integration. Clear definition of a hardware architecture allows the various traditional engineering disciplines (e.g., electrical and mechanical engineering) to work more effectively together to develop and manufacture new machines, devices and components. [1]

Contents

Hardware is also an expression used within the computer engineering industry to explicitly distinguish the (electronic computer) hardware from the software that runs on it. But hardware, within the automation and software engineering disciplines, need not simply be a computer of some sort. A modern automobile runs vastly more software than the Apollo spacecraft. Also, modern aircraft cannot function without running tens of millions of computer instructions embedded and distributed throughout the aircraft and resident in both standard computer hardware and in specialized hardware components such as IC wired logic gates, analog and hybrid devices, and other digital components. The need to effectively model how separate physical components combine to form complex systems is important over a wide range of applications, including computers, personal digital assistants (PDAs), cell phones, surgical instrumentation, satellites, and submarines.

Hardware architecture is the representation of an engineered (or to be engineered) electronic or electromechanical hardware system, and the process and discipline for effectively implementing the design(s) for such a system. It is generally part of a larger integrated system encompassing information, software, and device prototyping. [2]

It is a representation because it is used to convey information about the related elements comprising a hardware system, the relationships among those elements, and the rules governing those relationships.

Electric multi-turn valve actuator with controls. Schnittbild drehnatrieb 01.jpg
Electric multi-turn valve actuator with controls.

It is a process because a sequence of steps is prescribed to produce or change the architecture, and/or a design from that architecture, of a hardware system within a set of constraints.

It is a discipline because a body of knowledge is used to inform practitioners as to the most effective way to design the system within a set of constraints.

A hardware architecture is primarily concerned with the internal electrical (and, more rarely, the mechanical) interfaces among the system's components or subsystems, and the interface between the system and its external environment, especially the devices operated by or the electronic displays viewed by a user. (This latter, special interface, is known as the computer human interface, AKA human computer interface, or HCI; formerly called the man-machine interface.) [3] Integrated circuit (IC) designers are driving current technologies into innovative approaches for new products. Hence, multiple layers of active devices are being proposed as single chip, opening up opportunities for disruptive microelectronic, optoelectronic, and new microelectromechanical hardware implementation. [4] [5]

Background

A hardware architecture example, which is integrated as a handheld medical device for diabetes monitoring. Insulin pump with infusion set.jpg
A hardware architecture example, which is integrated as a handheld medical device for diabetes monitoring.
U-boat layout, with detailed equipment hardware specification and functionality. SRH025-p40.jpg
U-boat layout, with detailed equipment hardware specification and functionality.

Prior to the advent of digital computers, the electronics and other engineering disciplines used the terms system and hardware as they are still commonly used today. However, with the arrival of digital computers on the scene and the development of software engineering as a separate discipline, it was often necessary to distinguish among engineered hardware artifacts, software artifacts, and the combined artifacts.

A programmable hardware artifact, or machine, that lacks its computer program is impotent; even as a software artifact, or program, is equally impotent unless it can be used to alter the sequential states of a suitable (hardware) machine. However, a hardware machine and its programming can be designed to perform an almost illimitable number of abstract and physical tasks. Within the computer and software engineering disciplines (and, often, other engineering disciplines, such as communications), then, the terms hardware, software, and system came to distinguish between the hardware that runs a computer program, the software, and the hardware device complete with its program.

A hardware can be controlled from a software with the help of a middle device called hardware controller, this hardware controller can be used to perform various automated task from hardware, generally hardware controller consist of GPIO(general purpose input and output) pins, these pin's behaviour controlled by the piece of code. [6]

The hardware engineer or architect deals (more or less) exclusively with the hardware device; the software engineer or architect deals (more or less) exclusively with the program; and the systems engineer or systems architect is responsible for seeing that the programming is capable of properly running within the hardware device, and that the system composed of the two entities is capable of properly interacting with its external environment, especially the user, and performing its intended function.

A hardware architecture, then, is an abstract representation of an electronic or an electromechanical device capable of running a fixed or changeable program. [7] [8]

A hardware architecture generally includes some form of analog, digital, or hybrid electronic computer, along with electronic and mechanical sensors and actuators. Hardware design may be viewed as a 'partitioning scheme,' or algorithm, which considers all of the system's present and foreseeable requirements and arranges the necessary hardware components into a workable set of cleanly bounded subsystems with no more parts than are required. That is, it is a partitioning scheme that is exclusive, inclusive, and exhaustive. A major purpose of the partitioning is to arrange the elements in the hardware subsystems so that there is a minimum of electrical connections and electronic communications needed among them. In both software and hardware, a good subsystem tends to be seen as a meaningful "object." Moreover, a clear allocation of user requirements to the architecture (hardware and software) provides an effective basis for validation tests of the user's requirements in the as-built system.

See also

Related Research Articles

<span class="mw-page-title-main">Computing</span> Activity involving calculations or computing machinery

Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and the development of both hardware and software. Computing has scientific, engineering, mathematical, technological, and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology, and software engineering.

<span class="mw-page-title-main">Computer science</span> Study of computation

Computer science is the study of computation, information, and automation. Computer science spans theoretical disciplines to applied disciplines.

<span class="mw-page-title-main">Electrical engineering</span> Branch of engineering

Electrical engineering is an engineering discipline concerned with the study, design, and application of equipment, devices, and systems that use electricity, electronics, and electromagnetism. It emerged as an identifiable occupation in the latter half of the 19th century after the commercialization of the electric telegraph, the telephone, and electrical power generation, distribution, and use.

<span class="mw-page-title-main">Embedded system</span> Computer system with a dedicated function

An embedded system is a specialized computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use. In 2009, it was estimated that ninety-eight percent of all microprocessors manufactured were used in embedded systems.

<span class="mw-page-title-main">Computer engineering</span> Engineering discipline specializing in the design of computer hardware

Computer engineering is a branch of electrical engineering that integrates several fields of electrical engineering, electronics engineering and computer science required to develop computer hardware and software. Computer engineering is referred to as Electrical and Computer engineering OR Computer Science and Engineering at some universities

<span class="mw-page-title-main">Secure cryptoprocessor</span> Device used for encryption

A secure cryptoprocessor is a dedicated computer-on-a-chip or microprocessor for carrying out cryptographic operations, embedded in a packaging with multiple physical security measures, which give it a degree of tamper resistance. Unlike cryptographic processors that output decrypted data onto a bus in a secure environment, a secure cryptoprocessor does not output decrypted data or decrypted program instructions in an environment where security cannot always be maintained.

<span class="mw-page-title-main">System on a chip</span> Micro-electronic component

A system on a chip or system-on-chip is an integrated circuit that integrates most or all components of a computer or electronic system. These components usually include an on-chip central processing unit (CPU), memory interfaces, input/output devices and interfaces, and secondary storage interfaces, often alongside other components such as radio modems and a graphics processing unit (GPU) – all on a single substrate or microchip. SoCs may contain digital and also analog, mixed-signal and often radio frequency signal processing functions.

Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing electronic systems such as integrated circuits and printed circuit boards. The tools work together in a design flow that chip designers use to design and analyze entire semiconductor chips. Since a modern semiconductor chip can have billions of components, EDA tools are essential for their design; this article in particular describes EDA specifically with respect to integrated circuits (ICs).

An information system (IS) is a formal, sociotechnical, organizational system designed to collect, process, store, and distribute information. From a sociotechnical perspective, information systems comprise four components: task, people, structure, and technology. Information systems can be defined as an integration of components for collection, storage and processing of data, comprising digital products that process data to facilitate decision making and the data being used to provide information and contribute to knowledge.

Mechatronics engineering, also called mechatronics, is an interdisciplinary branch of engineering that focuses on the integration of mechanical engineering, electrical engineering, electronic engineering and software engineering, and also includes a combination of robotics, computer science, telecommunications, systems, control, automation and product engineering.

<span class="mw-page-title-main">LabVIEW</span> System-design platform and development environment

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a graphical system design and developmentplatform produced and distributed by National Instruments, based on a programming environment that uses a visual programming language. It is widely used for data acquisition, instrument control, and industrial automation. It provides tools for designing and deploying complex test and measurement systems.

A systems integrator is a person or company that specializes in bringing together component subsystems into a whole and ensuring that those subsystems function together, a practice known as system integration. They also solve problems of automation. Systems integrators may work in many fields but the term is generally used in the information technology (IT) field such as computer networking, the defense industry, the mass media, enterprise application integration, business process management or manual computer programming. Data quality issues are an important part of the work of systems integrators.

<span class="mw-page-title-main">Systems architect</span> Role title in technology fields

The systems architect is an information and communications technology professional. Systems architects define the architecture of a computerized system in order to fulfill certain requirements. Such definitions include: a breakdown of the system into components, the component interactions and interfaces, and the technologies and resources to be used in its design and implementation.

<span class="mw-page-title-main">Integrated circuit design</span> Engineering process for electronic hardware

Integrated circuit design, semiconductor design, chip design or IC design, is a sub-field of electronics engineering, encompassing the particular logic and circuit design techniques required to design integrated circuits, or ICs. ICs consist of miniaturized electronic components built into an electrical network on a monolithic semiconductor substrate by photolithography.

<span class="mw-page-title-main">Systems architecture</span> Conceptual model of a system

A system architecture is the conceptual model that defines the structure, behavior, and views of a system. An architecture description is a formal description and representation of a system, organized in a way that supports reasoning about the structures and behaviors of the system.

(In the automation and engineering environments, the hardware engineer or architect encompasses the electronics engineering and electrical engineering fields, with subspecialities in analog, digital, or electromechanical systems.)

System integration is defined in engineering as the process of bringing together the component sub-systems into one system and ensuring that the subsystems function together as a system, and in information technology as the process of linking together different computing systems and software applications physically or functionally, to act as a coordinated whole.

<span class="mw-page-title-main">Computer hardware</span> Physical components of a computer

Computer hardware includes the physical parts of a computer, such as the central processing unit (CPU), random access memory (RAM), motherboard, computer data storage, graphics card, sound card, and computer case. It includes external devices such as a monitor, mouse, keyboard, and speakers.

Simcenter Amesim is a commercial simulation software for the modeling and analysis of multi-domain systems. It is part of systems engineering domain and falls into the mechatronic engineering field.

<span class="mw-page-title-main">VisualSim Architect</span> Electronic system modeling and simulation software

VisualSim Architect is an electronic system-level software for modeling and simulation of electronic systems, embedded software, and semiconductors. VisualSim Architect is a commercial version of the Ptolemy II research project at the University of California Berkeley. The product was first released in 2003. VisualSim is a graphical tool that can be used for performance trade-off analyses using such metrics as bandwidth utilization, application response time, and buffer requirements. It can be used for architectural analysis of algorithms, components, software instructions, and hardware/software partitioning.

References

  1. Rai, L.; Kang, S.J. (2008). "Rule-based modular software and hardware architecture for multi-shaped robots using real-time dynamic behavior identification and selection". Knowledge-Based Systems. 21 (4): 273–283. doi:10.1016/j.knosys.2007.05.008.
  2. Frampton, K.D., Martin, S.E. & Minor, K. (2003). "The scaling of acoustic streaming for application in micro-fluidic devices". Applied Acoustics. 64 (7): 681–692. doi:10.1016/S0003-682X(03)00005-7.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Brunelli, C., Garzia, F. & Nurmi, J. (2008). "A coarse-grain reconfigurable architecture for multimedia applications featuring subword computation capabilities". Journal of Real-Time Image Processing. 3 (1–2): 21–32. doi:10.1007/s11554-008-0071-3. S2CID   25962199.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. Cale, T.S., Lu, J.-Q. & Gutmann, R.J. (2008). "Three-dimensional integration in microelectronics: Motivation, processing, and thermomechanical modeling". Chemical Engineering Communications. 195 (8): 847–888. doi:10.1080/00986440801930302. S2CID   95022083.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Cavalcanti, A., Shirinzadeh, B., Zhang, M. & Kretly, L.C. (2008). "Nanorobot Hardware Architecture for Medical Defense". Sensors. 8 (5): 2932–2958. Bibcode:2008Senso...8.2932C. doi: 10.3390/s8052932 . PMC   3675524 . PMID   27879858.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. "Techsoverflow - it is all about tech Techsoverflow" . Retrieved 2022-12-17.
  7. Assif, D., Himel, R. & Grajower, Y. (1988). "A new electromechanical device to measure the accuracy of interocclusal records". Journal of Prosthetic Dentistry. 59 (6): 672–676. doi:10.1016/0022-3913(88)90380-0. PMID   3165452.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Zimmermann, M., Volden, T., Kirstein, K.-U., Hafizovic, S., Lichtenberg, J., Brand, O. & Hierlemann, A. (2008). "A CMOS-based integrated-system architecture for a static cantilever array". Sensors and Actuators B: Chemical. 131 (1): 254–264. doi:10.1016/j.snb.2007.11.016.{{cite journal}}: CS1 maint: multiple names: authors list (link)