Heim theory

Last updated

Heim theory, first proposed by German physicist Burkhard Heim publicly in 1957, is an attempt to develop a theory of everything in theoretical physics. The theory claims to bridge some of the disagreements between quantum mechanics and general relativity. [1] The theory has received little attention in the scientific literature and is regarded as being outside mainstream science [2] [1] [3] [4] but has attracted some interest in popular and fringe media. [4] [5] [6]

Contents

Development

Heim attempted to resolve incompatibilities between quantum theory and general relativity. To meet that goal, he developed a mathematical approach based on quantizing spacetime. [2] Others have attempted to apply Heim theory to nonconventional space propulsion and faster than light concepts, as well as the origin of dark matter. [7] [8]

Heim claimed that his theory yields particle masses directly from fundamental physical constants and that the resulting masses are in agreement with experiment, but this claim has not been confirmed. Heim's theory is formulated mathematically in six or more dimensions and uses Heim's own version of difference equations.

Related Research Articles

In physics, the fundamental interactions or fundamental forces are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist:

Faster-than-light travel and communication are the conjectural propagation of matter or information faster than the speed of light. The special theory of relativity implies that only particles with zero rest mass may travel at the speed of light, and that nothing may travel faster.

M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity.

<span class="mw-page-title-main">Physics</span> Scientific field of study

Physics is the natural science of matter, involving the study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. A scientist who specializes in the field of physics is called a physicist.

<span class="mw-page-title-main">Quantum gravity</span> Description of gravity using discrete values

Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics. It deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vicinity of black holes or similar compact astrophysical objects, such as neutron stars, as well as in the early stages of the universe moments after the Big Bang.

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

<span class="mw-page-title-main">Theory of everything</span> Hypothetical physical concept

A theory of everything (TOE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the universe. Finding a theory of everything is one of the major unsolved problems in physics.

<span class="mw-page-title-main">Tractor beam</span> Technological device

A tractor beam is a device that can attract one object to another from a distance. The concept originates in fiction: The term was coined by E. E. Smith in his novel Spacehounds of IPC (1931). Since the 1990s, technology and research have labored to make it a reality, and have had some success on a microscopic level. Less commonly, a similar beam that repels is known as a pressor beam or repulsor beam. Gravity impulse and gravity propulsion beams are traditionally areas of research from fringe physics that coincide with the concepts of tractor and repulsor beams.

In philosophy, the philosophy of physics deals with conceptual and interpretational issues in modern physics, many of which overlap with research done by certain kinds of theoretical physicists. Historically, philosophers of physics have engaged with questions such as the nature of space, time, matter and the laws that govern their interactions, as well as the epistemological and ontological basis of the theories used by practicing physicists. The discipline draws upon insights from various areas of philosophy, including metaphysics, epistemology, and philosophy of science, while also engaging with the latest developments in theoretical and experimental physics.

<span class="mw-page-title-main">Mathematical physics</span> Application of mathematical methods to problems in physics

Mathematical physics refers to the development of mathematical methods for application to problems in physics. The Journal of Mathematical Physics defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics, known as physical mathematics.

<span class="mw-page-title-main">Anti-gravity</span> Idea of creating a place or object that is free from the force of gravity

Anti-gravity is a hypothetical phenomenon of creating a place or object that is free from the force of gravity. It does not refer to either the lack of weight under gravity experienced in free fall or orbit, or to balancing the force of gravity with some other force, such as electromagnetism and aerodynamic lift. Anti-gravity is a recurring concept in science fiction. Examples are the gravity blocking substance "Cavorite" in H. G. Wells's The First Men in the Moon and the Spindizzy machines in James Blish's Cities in Flight.

In physics, a unified field theory (UFT) is a type of field theory that allows all that is usually thought of as fundamental forces and elementary particles to be written in terms of a pair of physical and virtual fields. According to modern discoveries in physics, forces are not transmitted directly between interacting objects but instead are described and interpreted by intermediary entities called fields.

Since the 19th century, some physicists, notably Albert Einstein, have attempted to develop a single theoretical framework that can account for all the fundamental forces of nature – a unified field theory. Classical unified field theories are attempts to create a unified field theory based on classical physics. In particular, unification of gravitation and electromagnetism was actively pursued by several physicists and mathematicians in the years between the two World Wars. This work spurred the purely mathematical development of differential geometry.

Burkhard Heim was a German theoretical physicist known for creating a unified field theory called Heim theory. He was particularly interested in the application of his theory to the development of hyperspace travel.

In the history of physics, aether theories propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models.

Walter Dröscher is a retired physicist who has worked on developing Heim Theory. In 1980, Dröscher was introduced to the reclusive German physicist Burkhard Heim and became one of the few physicists to collaborate with Heim.

<span class="mw-page-title-main">Physics beyond the Standard Model</span> Theories trying to extend known physics

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of the standard model, the strong CP problem, neutrino oscillations, matter–antimatter asymmetry, and the nature of dark matter and dark energy. Another problem lies within the mathematical framework of the Standard Model itself: the Standard Model is inconsistent with that of general relativity, and one or both theories break down under certain conditions, such as spacetime singularities like the Big Bang and black hole event horizons.

Field propulsion is the concept of spacecraft propulsion where no propellant is necessary but instead momentum of the spacecraft is changed by an interaction of the spacecraft with external force fields, such as gravitational and magnetic fields from stars and planets. Proposed drives that use field propulsion are often called a reactionless or propellantless drive.

<span class="mw-page-title-main">Theoretical physics</span> Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

<span class="mw-page-title-main">History of subatomic physics</span> Chronological listing of experiments and discoveries

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

References

  1. 1 2 Long, Kelvin F. (2012). Deep Space Propulsion: A Roadmap to Interstellar Flight (Google Books preview). Springer Science+Business Media. pp. 295–296. ISBN   978-1461406075.
  2. 1 2 Lietz, Haiko (5 January 2006). "Take a leap into hyperspace" (Full text article available for free download.). New Scientist magazine. Reed Business Information Ltd. Retrieved 20 July 2013. ...the idea relies on an obscure and largely unrecognized kind of physics...The majority of physicists have never heard of Heim theory, and most of those contacted by New Scientist said they couldn't make sense of Dröscher and Häuser's description of the theory behind their proposed experiment...The general consensus seems to be that Dröscher and Häuser's theory is incomplete at best...it has not passed any normal form of peer review.
  3. Citation rates; other information (20 July 2013). "Dröscher, W." Google Scholar. Retrieved 20 July 2013.
  4. 1 2 Modanese, Giovanni and Robertson, Glen A. (2012). Gravity-Superconductors Interactions: Theory and Experiment (Google Books preview). Bentham Science Publishers. pp. 230–231. ISBN   978-1608054008.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. Farrell, Joseph P. (2010). Babylon's Banksters: The Alchemy of Deep Physics, High Finance and Ancient Religion. Port Townsend, WA: Feral House. pp. 110–111. ISBN   978-1932595796.
  6. Ufos For Know-It-Alls. Filiquarian Publishing. 2008. p. 41. ISBN   978-1599862323.[ permanent dead link ]
  7. List of Publications. HPCC-Space GmbH. 2006.
  8. Auerbach, T.; von Ludwiger, I. (1992). "Heim's Theory of Elementary Particle Structures" (PDF). Journal of Scientific Exploration. 6 (3): 217–231. Archived from the original (PDF) on 7 May 2012. Retrieved 20 July 2013. So far Heim has not succeeded in finding a criterion which would limit the number of excited states to those actually observed. Despite the insight gained into particle physics, the theory is not entirely equivalent to modem quantum theory. This enables [Heim] to derive logically precise statements about the process of life, the origin of paranormal phenomena, and the structure of realms far transcending the 4-dimensional world of our experience.[ unreliable source? ]