Henry adsorption constant

Last updated

The Henry adsorption constant is the constant appearing in the linear adsorption isotherm, which formally resembles Henry's law; therefore, it is also called Henry's adsorption isotherm. It is named after British chemist William Henry. This is the simplest adsorption isotherm in that the amount of the surface adsorbate is represented to be proportional to the partial pressure of the adsorptive gas: [1]

Contents

where:

For solutions, concentrations, or activities, are used instead of the partial pressures.

The linear isotherm can be used to describe the initial part of many practical isotherms. It is typically taken as valid for low surface coverages, and the adsorption energy being independent of the coverage (lack of inhomogeneities on the surface).

The Henry adsorption constant can be defined as: [2]

where:

Application at a permeable wall [2]

If a solid body is modeled by a constant field and the structure of the field is such that it has a penetrable core, then

Here is the position of the dividing surface, is the external force field, simulating a solid, is the field value deep in the solid, , is the Boltzmann constant, and is the temperature.

Introducing "the surface of zero adsorption"

where

and

we get

and the problem of determination is reduced to the calculation of .

Taking into account that for Henry absorption constant we have

where is the number density inside the solid, we arrive at the parametric dependence

where

Application at a static membrane [2]

If a static membrane is modeled by a constant field and the structure of the field is such that it has a penetrable core and vanishes when , then

We see that in this case the sign and value depend on the potential and temperature only.

Application at an impermeable wall [3]

If a solid body is modeled by a constant hard-core field, then

or

where

Here

For the hard solid potential

where is the position of the potential discontinuity. So, in this case

Choice of the dividing surface [2] [3]

The choice of the dividing surface, strictly speaking, is arbitrary, however, it is very desirable to take into account the type of external potential . Otherwise, these expressions are at odds with the generally accepted concepts and common sense.

First, must lie close to the transition layer (i.e., the region where the number density varies), otherwise it would mean the attribution of the bulk properties of one of the phase to the surface.

Second. In the case of weak adsorption, for example, when the potential is close to the stepwise, it is logical to choose close to . (In some cases, choosing , where is particle radius, excluding the "dead" volume.)

In the case of pronounced adsorption it is advisable to choose close to the right border of the transition region. In this case all particles from the transition layer will be attributed to the solid, and is always positive. Trying to put in this case will lead to a strong shift of to the solid body domain, which is clearly unphysical.

Conversely, if (fluid on the left), it is advisable to choose lying on the left side of the transition layer. In this case the surface particles once again refer to the solid and is back positive.

Thus, except in the case of static membrane, we can always avoid the "negative adsorption" for one-component systems.

See also

Related Research Articles

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation.

Helmholtz free energy Thermodynamic potential

In thermodynamics, the Helmholtz free energy is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature and volume. The negative of the change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process in which volume is held constant. If the volume were not held constant, part of this work would be performed as boundary work. This makes the Helmholtz energy useful for systems held at constant volume. Furthermore, at constant temperature, the Helmholtz free energy is minimized at equilibrium.

Path integral formulation

The path integral formulation is a description in quantum mechanics that generalizes the action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

Bending

In applied mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element.

Multiple integral Generalization of definite integrals to functions of multiple variables

In mathematics, a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in are called double integrals, and integrals of a function of three variables over a region in are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.

Characteristic function (probability theory)

In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.

The isothermal–isobaric ensemble is a statistical mechanical ensemble that maintains constant temperature and constant pressure applied. It is also called the -ensemble, where the number of particles is also kept as a constant. This ensemble plays an important role in chemistry as chemical reactions are usually carried out under constant pressure condition. The NPT ensemble is also useful for measuring the equation of state of model systems whose virial expansion for pressure cannot be evaluated, or systems near first-order phase transitions.

In applied mathematics, polyharmonic splines are used for function approximation and data interpolation. They are very useful for interpolating and fitting scattered data in many dimensions. Special cases include thin plate splines and natural cubic splines in one dimension.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics, the secondary measure associated with a measure of positive density ρ when there is one, is a measure of positive density μ, turning the secondary polynomials associated with the orthogonal polynomials for ρ into an orthogonal system.

In differential geometry, Hilbert's theorem (1901) states that there exists no complete regular surface of constant negative gaussian curvature immersed in . This theorem answers the question for the negative case of which surfaces in can be obtained by isometrically immersing complete manifolds with constant curvature.

In mathematics — specifically, in stochastic analysis — an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.

In materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and adsorption are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from solid solutions, whereas adsorption is generally used to describe such partitioning from liquids and gases to surfaces. The molecular-level segregation discussed in this article is distinct from other types of materials phenomena that are often called segregation, such as particle segregation in granular materials, and phase separation or precipitation, wherein molecules are segregated in to macroscopic regions of different compositions. Segregation has many practical consequences, ranging from the formation of soap bubbles, to microstructural engineering in materials science, to the stabilization of colloidal suspensions.

In mathematics, the cylindrical harmonics are a set of linearly independent functions that are solutions to Laplace's differential equation, , expressed in cylindrical coordinates, ρ, φ, and z (height). Each function Vn(k) is the product of three terms, each depending on one coordinate alone. The ρ-dependent term is given by Bessel functions.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

Langmuir adsorption model Model describing the adsorption of a mono-layer of gas molecules on an ideal flat surface

The Langmuir adsorption model explains adsorption by assuming an adsorbate behaves as an ideal gas at isothermal conditions. According to the model, adsorption and desorption are reversible processes. This model even explains the effect of pressure i.e at these conditions the adsorbate's partial pressure, , is related to the volume of it, V, adsorbed onto a solid adsorbent. The adsorbent, as indicated in the figure, is assumed to be an ideal solid surface composed of a series of distinct sites capable of binding the adsorbate. The adsorbate binding is treated as a chemical reaction between the adsorbate gaseous molecule and an empty sorption site, S. This reaction yields an adsorbed species with an associated equilibrium constant :

A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product

The Mehler kernel is a complex-valued function found to be the propagator of the quantum harmonic oscillator.

In representation theory of mathematics, the Waldspurger formula relates the special values of two L-functions of two related admissible irreducible representations. Let k be the base field, f be an automorphic form over k, π be the representation associated via the Jacquet–Langlands correspondence with f. Goro Shimura (1976) proved this formula, when and f is a cusp form; Günter Harder made the same discovery at the same time in an unpublished paper. Marie-France Vignéras (1980) proved this formula, when { and f is a newform. Jean-Loup Waldspurger, for whom the formula is named, reproved and generalized the result of Vignéras in 1985 via a totally different method which was widely used thereafter by mathematicians to prove similar formulas.

References

  1. H. Yıldırım Erbil, "Surface Chemistry of Solid And Liquid Interfaces", Blackwell Publishing, 2006.(google books)
  2. 1 2 3 4 Zaskulnikov V. M., Statistical mechanics of fluids at a permeable wall: arXiv:1111.0082
  3. 1 2 Zaskulnikov V. M., Statistical mechanics of fluids at an impermeable wall: arXiv:1005.1063