This article needs additional citations for verification .(December 2009) |
A high-frequency recombination cell (Hfr cell) (also called an Hfr strain) is a bacterium with a conjugative plasmid (for example, the F-factor) integrated into its chromosomal DNA. The integration of the plasmid into the cell's chromosome is through homologous recombination. A conjugative plasmid capable of chromosome integration is also called an episome (a segment of DNA that can exist as a plasmid or become integrated into the chromosome). When conjugation occurs, Hfr cells are very efficient in delivering chromosomal genes of the cell into recipient F− cells, which lack the episome.
The Hfr strain was first characterized by Luca Cavalli-Sforza. William Hayes also isolated another Hfr strain independently. [2]
An Hfr cell can transfer a portion of the bacterial genome. Despite being integrated into the chromosomal DNA of the bacteria, the F factor of Hfr cells can still initiate conjugative transfer, without being excised from the bacterial chromosome first. Due to the F factor's inherent tendency to transfer itself during conjugation, the rest of the bacterial genome is dragged along with it. Therefore, unlike a normal F+ cell, Hfr strains will attempt to transfer their entire DNA through the mating bridge, in a fashion similar to the normal conjugation. In a typical conjugation, the recipient cell also becomes F+ after conjugation as it receives an entire copy of the F factor plasmid; but this is not the case in conjugation mediated by Hfr cells. Due to the large size of bacterial chromosome, it is very rare for the entire chromosome to be transferred into the F − cell as time required is simply too long for the cells to maintain their physical contact. Therefore, as the conjugative transfer is not complete (the circular nature of plasmid and bacterial chromosome requires complete transfer for the F factor to be transferred as it may be cut in the middle), the recipient F− cells do not receive the complete F factor sequence, and do not become F + due to its inability to form a sex pilus. [3]
In conjugation mediated by Hfr cells, transfer of DNA starts at the origin of transfer (oriT) located within the F factor and then continues clockwise or counterclockwise depending on the orientation of F factor in the chromosome. Therefore, the length of chromosomal DNA transferred into the F− cell is proportional to the time that conjugation is allowed to happen. This results in sequential transfer of genes on the bacterial chromosome. Bacterial geneticists make use of this principle to map the genes on the bacterial chromosome. This technique is called interrupted mating as geneticists allow conjugation to take place for different periods of time before stopping conjugation with a high-speed blender. By using Hfr and F− strains with one strain carrying mutations in several genes, each affecting a metabolic function or causing antibiotic resistance, and examining the phenotype of the recipient cells on selective agar plates, one can deduce which genes are transferred into the recipient cells first and therefore are closer to the oriT sequence on the chromosome.
F-prime cell contains F-plasmid that integrates with the chromosomal DNA and carries part of the chromosomal DNA along with it while being excised from the chromosome. Thus F-prime plasmid is the plasmid, containing part of the chromosomal DNA which can be transferred to recipient cell, along with the plasmid during conjugation. [4]
Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. This takes place through a pilus. It is a parasexual mode of reproduction in bacteria.
A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as antibiotic resistance. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet.
Genetic recombination is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryotes, genetic recombination during meiosis can lead to a novel set of genetic information that can be passed on from the parents to the offspring. Most recombination is naturally occurring.
In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.
Transduction is the process by which foreign DNA is introduced into a cell by a virus or viral vector. An example is the viral transfer of DNA from one bacterium to another and hence an example of horizontal gene transfer. Transduction does not require physical contact between the cell donating the DNA and the cell receiving the DNA, and it is DNase resistant. Transduction is a common tool used by molecular biologists to stably introduce a foreign gene into a host cell's genome.
Pathogenicity islands (PAIs), as termed in 1990, are a distinct class of genomic islands acquired by microorganisms through horizontal gene transfer. Pathogenicity islands are found in both animal and plant pathogens. Additionally, PAIs are found in both gram-positive and gram-negative bacteria. They are transferred through horizontal gene transfer events such as transfer by a plasmid, phage, or conjugative transposon. Therefore, PAIs contribute to microorganisms' ability to evolve.
Mycobacterium smegmatis is an acid-fast bacterial species in the phylum Actinobacteria and the genus Mycobacterium. It is 3.0 to 5.0 µm long with a bacillus shape and can be stained by Ziehl–Neelsen method and the auramine-rhodamine fluorescent method. It was first reported in November 1884 by Lustgarten, who found a bacillus with the staining appearance of tubercle bacilli in syphilitic chancres. Subsequent to this, Alvarez and Tavel found organisms similar to that described by Lustgarten also in normal genital secretions (smegma). This organism was later named M. smegmatis.
A tumour inducing (Ti) plasmid is a plasmid found in pathogenic species of Agrobacterium, including A. tumefaciens, A. rhizogenes, A. rubi and A. vitis.
An exogenote is a piece of donor DNA that is involved in the mating of prokaryotic organisms.
A genomic island (GI) is part of a genome that has evidence of horizontal origins. The term is usually used in microbiology, especially with regard to bacteria. A GI can code for many functions, can be involved in symbiosis or pathogenesis, and may help an organism's adaptation. Many sub-classes of GIs exist that are based on the function that they confer. For example, a GI associated with pathogenesis is often called a pathogenicity island (PAIs), while GIs that contain many antibiotic resistant genes are referred to as antibiotic resistance islands. The same GI can occur in distantly related species as a result of various types of lateral gene transfer. This can be determined by base composition analysis, as well as phylogeny estimations.
Merozygote is a state when a cell, usually bacterial, is temporarily partial diploid as result of DNA transfer processes like conjugation.
The fertility factor allows genes to be transferred from one bacterium carrying the factor to another bacterium lacking the factor by conjugation. The F factor was the first plasmid to be discovered. Unlike other plasmids, F factor is constitutive for transfer proteins due to a mutation in the gene finO. The F plasmid belongs to a class of conjugative plasmids that control sexual functions of bacteria with a fertility inhibition (Fin) system.
Allan M. Campbell was an American microbiologist and geneticist whose pioneering work on Lambda phage has helped advance molecular biology in the late 20th century.
Fosmids are similar to cosmids but are based on the bacterial F-plasmid. The cloning vector is limited, as a host can only contain one fosmid molecule. Fosmids can hold DNA inserts of up to 40 kb in size; often the source of the insert is random genomic DNA. A fosmid library is prepared by extracting the genomic DNA from the target organism and cloning it into the fosmid vector. The ligation mix is then packaged into phage particles and the DNA is transfected into the bacterial host. Bacterial clones propagate the fosmid library. The low copy number offers higher stability than vectors with relatively higher copy numbers, including cosmids. Fosmids may be useful for constructing stable libraries from complex genomes. Fosmids have high structural stability and have been found to maintain human DNA effectively even after 100 generations of bacterial growth. Fosmid clones were used to help assess the accuracy of the Public Human Genome Sequence.
An origin of transfer (oriT) is a short sequence ranging from 40-500 base pairs in length that is necessary for the transfer of DNA from a gram-negative bacterial donor to recipient during bacterial conjugation. The transfer of DNA is a critical component for antimicrobial resistance within bacterial cells and the oriT structure and mechanism within plasmid DNA is complimentary for its function in bacterial conjugation. The first oriT to be identified and cloned was on the RK2 (IncP) conjugative plasmid, which was done by Guiney and Helinski in 1979.
Zygotic induction occurs when a bacterial cell carrying the silenced DNA of a bacterial virus in its chromosome transfers the viral DNA along with its own DNA to another bacterial cell lacking the virus, causing the recipient of the DNA to break open. In the donor cell, a repressor protein encoded by the prophage keeps the viral genes turned off so that virus is not produced. When DNA is transferred to the recipient cell by conjugation, the viral genes in the transferred DNA are immediately turned on because the recipient cell lacks the repressor. As a result, many virus are made in the recipient cell, and lysis eventually occurs to release the new virus.
Bacterial genetics is the subfield of genetics devoted to the study of bacteria. Bacterial genetics are subtly different from eukaryotic genetics, however bacteria still serve as a good model for animal genetic studies. One of the major distinctions between bacterial and eukaryotic genetics stems from the bacteria's lack of membrane-bound organelles, necessitating protein synthesis occur in the cytoplasm.
Unsuccessful transfer or abortive transfer is any bacterial DNA transfer from donor cells to recipient cells that fails to survive transduction and conjugation. In all cases, the transferred fragment could be diluted during the proliferation phase. Failures in the integration of the transferred DNA in the genetic material of the recipient cells may be due to:
Bacterial recombination is a type of genetic recombination in bacteria characterized by DNA transfer from one organism called donor to another organism as recipient. This process occurs in three main ways:
Integrative and Conjugative Elements (ICEs) are mobile genetic elements present in both gram-positive and gram-negative bacteria. In a donor cell, ICEs are located primarily on the chromosome, but have the ability to excise themselves from the genome and transfer to recipient cells via bacterial conjugation.