High-resolution picture transmission

Last updated
An HRPT Image from a NOAA Satellite Fran10.jpg
An HRPT Image from a NOAA Satellite

Weather satellite pictures are often broadcast as high-resolution picture transmissions (HRPTs), color high-resolution picture transmissions (CHRPTs) for Chinese weather satellite transmissions, or advanced high-resolution picture transmissions (AHRPTs) for EUMETSAT weather satellite transmissions. HRPT transmissions are available around the world and are available from both polar and geostationary weather satellites. The polar satellites rotate in orbits that allow each location on Earth to be covered by the weather satellite twice per day while the geostationary satellites remain in one location at the equator taking weather images of the Earth from that location over the equator. The sensor on weather satellites that picks up the data transmitted in HRPT is referred to as an Advanced Very High Resolution Radiometer (AVHRR) for NOAA satelites. [1]

Contents

Broadcast signal
The working frequency band for HRPT is L Band at 1.670–1.710 GHz and the modulation type isBPSK. [2] On NOAA KLM satellites the transmission power is 6.35 Watts, or 38.03 dBm. [3] The METOP-A satellite broadcasts with a bandwidth of 4.5 MHz, these use QPSK and AHRPT. [4]

Reception

Hardware

In order to receive HRPT transmissions a high gain antenna is required, such as a small satellite dish, a helical antenna, or a crossed yagi. Basic reception equipment includes a parabolic dish antenna attached to an Azimuth-Elevation unit. The HRPT signal is further enhanced with a 1.7 GHz pre-amplifier. An HRPT receiver unit and a dish tracking controller are required to steer the Azimuth-Elevation unit controlling the parabolic dish. As an alternative to receiving direct broadcast from polar orbiting satellites, users in Europe and Africa can also receive rebroadcast data from the EUMETSAT EUMETCAST service via Digital Video Broadcasting using a simple stationary satellite dish. [5]

Software

Both commercial and free software for demodulating HRPT transmission signals exists: Example of commercial demodulation software is XHRPT Decoder. [6] Free software exists as a part of GNURadio package, the GR-NOAA blocks and flowcharts distributed by Manuel Bülo. [7]

Free software for decoding data packets contained in HRPT is available, for example DWDSAT HRPT Viewer V1.1.0 [8] or AAPP [9] with Satpy. [10]

Satellite status

OrganizationSatellite NameOrbitServiceFrequencyData rateStatus
NOAANOAA-15PolarHRPT1702.5 MHz0.665Mbps [11] Transmitting
NOAANOAA-18PolarHRPT1707.0 MHz0.665Mbps [11] Transmitting
NOAANOAA-19PolarHRPT1698.0 MHz [12] 0.665Mbps [11] Transmitting
EUMETSATMetop-A [13] PolarAHRPT1701.3 MHz4.66Mbps [14] Offline
EUMETSATMetop-BPolarAHRPT1701.3 MHz4.66Mbps [14] Transmitting
EUMETSATMetop-CPolarAHRPT1701.3 MHz4.66Mbps [14] Transmitting
CMA Fengyun 3A [15] Sun-synchronous AHRPT1704.5 MHz4.2Mbps [16] Offline
CMA Fengyun 3B [17] Sun-synchronousAHRPT1704.5 MHz4.2Mbps [16] Offline
CMA Fengyun 3C [18] Sun-synchronousAHRPT1701.3 MHz4.2Mbps [16] Transmitting
RosHydroMetMeteor-M N2Sun-synchronousAHRPT1700.0 MHz [19] 0.665Mbps [19] Offline
RosHydroMetMeteor-M N2-2Sun-synchronousAHRPT1700.0 MHz [20] 0.665Mbps [20] Offline
RosHydroMetMeteor-M N2-3Sun-synchronousAHRPT1700.0 MHz [21] 0.665Mbps [21] Transmitting
RosHydroMetMeteor-M N2-4Sun-synchronousAHRPT1700.0 MHz [22] 0.665Mbps [22] Transmitting

Notes and references

  1. "NOAASIS - NOAA Satellite Information System for NOAA Meteorological / Weather Satellites". Archived from the original on 2006-04-27. Retrieved 2009-04-12.
  2. http://www.scanex.ru/en/stations/default.asp?submenu=alice&id=specifications
  3. "NOAA KLM USer's GUIDE Section 4.1". Archived from the original on 2010-05-27. Retrieved 2009-12-08.
  4. "Archived copy". Archived from the original on 2008-11-26. Retrieved 2009-12-08.{{cite web}}: CS1 maint: archived copy as title (link)
  5. "EUMETCAST". 5 May 2020.
  6. "USA-Satcom xHRPT decoder setup" . Retrieved 2020-01-05.
  7. "A Simple GnuRadio HRPT Decoder" . Retrieved 2020-01-05.[ permanent dead link ]
  8. "DWDSAT HRPT Viewer - from SatSignal Software".
  9. "ATOVS and AVHRR Pre-processing Package (AAPP)".
  10. "Satpy".
  11. 1 2 3 "NOAA table of Polar-orbiting Satellites Equator Crossing Times and Frequencies". 2011-09-01.
  12. "Operational Satellite Status Information - NOAA Satellite Information System (NOAASIS); Office of Satellite and Product Operations". Archived from the original on 2013-07-03. Retrieved 2009-05-14.
  13. http://www.eumetsat.int/idcplg?IdcService=GET_FILE&dDocName=pdf_td18_metop%5B%5D
  14. 1 2 3 EUMETSAT Polar System Core Ground Segment:Metop HRPT/LRPT User Station Design Specification REF: EPS-ASPI-DS-0674 DATE: 05/03/03 ISSUE: 1.1
  15. "WMO OSCAR | Satellite: FY-3A".
  16. 1 2 3 "– AHRPT on the series of FY-3 satellites is disseminated at 1704.5 MHz with a bandwidth of 6.8 MHz at a data rate of 4.2 Mbps or on Metop at 1701 MHz with a bandwidth of 4.5 MHz at a data rate of 4.66 Mbps ." Meteorological Satellite Communications David F. McGinnis, NOAA Markus Dreis, EUMETSAT 17 September 2009
  17. "WMO OSCAR | Satellite: FY-3B".
  18. "WMO OSCAR | Satellite: FY-3C".
  19. 1 2 "WMO Oscar Meteor-M N2-1" . Retrieved 2020-01-05.
  20. 1 2 "WMO Oscar Meteor-M N2-2" . Retrieved 2020-01-05.
  21. 1 2 "WMO Oscar Meteor-M N2-3" . Retrieved 2023-09-10.
  22. 1 2 "WMO Oscar Meteor-M N2-4" . Retrieved 2024-08-23.

Related Research Articles

TV DX and FM DX is the active search for distant radio or television stations received during unusual atmospheric conditions. The term DX is an old telegraphic term meaning "long distance."

<span class="mw-page-title-main">Weather satellite</span> Type of satellite designed to record the state of the Earths atmosphere

A weather satellite or meteorological satellite is a type of Earth observation satellite that is primarily used to monitor the weather and climate of the Earth. Satellites can be polar orbiting, or geostationary.

<span class="mw-page-title-main">EUMETSAT</span> European intergovernmental organisation

The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is an intergovernmental organisation created through an international convention agreed by a current total of 30 European Member States.

<span class="mw-page-title-main">Television Infrared Observation Satellite</span> Series of early American weather satellites

Television InfraRed Observation Satellite (TIROS) is a series of early weather satellites launched by the United States, beginning with TIROS-1 in 1960. TIROS was the first satellite that was capable of remote sensing of the Earth, enabling scientists to view the Earth from a new perspective: space. The program, promoted by Harry Wexler, proved the usefulness of satellite weather observation, at a time when military reconnaissance satellites were secretly in development or use. TIROS demonstrated at that time that "the key to genius is often simplicity". TIROS is an acronym of "Television InfraRed Observation Satellite" and is also the plural of "tiro" which means "a young soldier, a beginner".

EUMETCast is a method of disseminating various meteorological data operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The main purpose is the dissemination of EUMETSAT's own data, but various data from other providers are broadcast as well. EUMETCast is a contribution to GEONETCast and IGDDS and provides data for GEOSS and GMES.

<span class="mw-page-title-main">Automatic picture transmission</span>

The Automatic Picture Transmission (APT) system is an analog image transmission system developed for use on weather satellites. It was introduced in the 1960s and over four decades has provided image data to relatively low-cost user stations at locations in most countries of the world. A user station anywhere in the world can receive local data at least twice a day from each satellite as it passes nearly overhead.

<span class="mw-page-title-main">Advanced very-high-resolution radiometer</span>

The Advanced Very-High-Resolution Radiometer (AVHRR) instrument is a space-borne sensor that measures the reflectance of the Earth in five spectral bands that are relatively wide by today's standards. AVHRR instruments are or have been carried by the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES) and European MetOp satellites. The instrument scans several channels; two are centered on the red (0.6 micrometres) and near-infrared (0.9 micrometres) regions, a third one is located around 3.5 micrometres, and another two the thermal radiation emitted by the planet, around 11 and 12 micrometres.

<span class="mw-page-title-main">MetOp</span> Series of European meteorological satellites

Metop is a series of three polar-orbiting meteorological satellites developed by the European Space Agency (ESA) and operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The satellites form the space segment component of the overall EUMETSAT Polar System (EPS), which in turn is the European half of the EUMETSAT / NOAA Initial Joint Polar System (IJPS). The satellites carry a payload comprising 11 scientific instruments and two which support Cospas-Sarsat Search and Rescue services. In order to provide data continuity between Metop and NOAA Polar Operational Environmental Satellites (POES), several instruments are carried on both fleets of satellites.

The low-rate picture transmission (LRPT) is a digital transmission system, intended to deliver images and data from an orbital weather satellite directly to end users via a VHF radio signal. It is used aboard polar-orbiting, near-Earth weather satellite programs such as MetOp and NPOESS.

<span class="mw-page-title-main">NOAA-17</span>

NOAA-17, also known as NOAA-M before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-17 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-L series and a new launch vehicle.

<span class="mw-page-title-main">NOAA-16</span>

NOAA-16, also known as NOAA-L before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-16 continued the series of Advanced TIROS-N (ATN) spacecraft that began with the launch of NOAA-8 (NOAA-E) in 1983; but it had additional new and improved instrumentation over the NOAA A-K series and a new launch vehicle. It was launched on 21 September 2000 and, following an unknown anomaly, it was decommissioned on 9 June 2014. In November of 2015 it broke up in orbit, creating more than 200 pieces of debris.

<span class="mw-page-title-main">NOAA-18</span>

NOAA-18, also known as NOAA-N before launch, is an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-18 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-M series and a new launch vehicle. NOAA-18 is in an afternoon equator-crossing orbit and replaced NOAA-17 as the prime afternoon spacecraft.

<span class="mw-page-title-main">NOAA-15</span> Longest Operating Weather Satellite

NOAA-15, also known as NOAA-K before launch, is an operational, polar-orbiting of the NASA-provided Television Infrared Observation Satellite (TIROS) series of weather forecasting satellite operated by National Oceanic and Atmospheric Administration (NOAA). NOAA-15 was the latest in the Advanced TIROS-N (ATN) series. It provided support to environmental monitoring by complementing the NOAA/NESS Geostationary Operational Environmental Satellite program (GOES).

NOAA-13, also known as NOAA-I before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the operational, polar orbiting, meteorological satellite series operated by the National Environmental Satellite System (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the series (fifth) of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983. NOAA-I was in an afternoon equator-crossing orbit and was intended to replace the NOAA-11 (NOAA-H) as the prime afternoon (14:00) spacecraft.

<span class="mw-page-title-main">Es'hail 2</span>

Es'hail 2 is a Qatari satellite, launched aboard a SpaceX Falcon 9 rocket on November 15, 2018. Es'hail 2 was built by Japan's Mitsubishi Electric company, and operates at 26° East longitude along a geostationary orbit to provide direct-to-home television services in the Middle East and North Africa region. The satellite features 24 Ku-band and 11 Ka-band transponders to provide direct broadcasting services for television, government and commercial content distribution. In addition to commercial services, the payload of Es'hail 2 includes a linear transponder with a bandwidth of 500 kHz and 8 MHz for the amateur radio satellite service, with uplink on 2.4 GHz and downlink on 10.45 GHz.

<span class="mw-page-title-main">NOAA-2</span>

NOAA-2, also known as ITOS-D was a weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). It was part of a series of satellites called ITOS, or improved TIROS. NOAA-2 was launched on a Delta rocket on October 15, 1972. The launch carried one other satellite: AMSAT-OSCAR 6.

<span class="mw-page-title-main">NOAA-8</span> Weather satellite

NOAA-8, known as NOAA-E before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was first of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

<span class="mw-page-title-main">NOAA-9</span> American weather satellite

NOAA-9, known as NOAA-F before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the second of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-10, known as NOAA-G before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the third of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-12, also known as NOAA-D before launch, was an American weather satellite operated by National Oceanic and Atmospheric Administration (NOAA), an operational meteorological satellite for use in the National Environmental Satellite, Data, and Information Service (NESDIS). The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.