High energy density physics

Last updated

High-energy-density physics (HEDP) is a new subfield of physics intersecting condensed matter physics, nuclear physics, astrophysics and plasma physics. It has been defined as the physics of matter and radiation at energy densities in excess of about 100 GJ/m^3. [1]

Contents

Definition

High energy density (HED) science includes the study of condensed matter at densities common to the deep interiors of giant planets, and hot plasmas typical of stellar interiors. [2] This multidisciplinary field provides a foundation for understanding a wide variety of astrophysical observations and understanding and ultimately controlling the fusion regime. Specifically, thermonuclear ignition by inertial confinement in the laboratory – as well as the transition from planets to brown dwarfs and stars in nature – takes place via the HED regime. A wide variety of new and emerging experimental capabilities (National Ignition Facility (NIF), Jupiter Laser Facility (JLF), etc.) together with the push towards Exascale Computing help make this new scientific frontier rich with discovery. [3]

The HED domain is often defined by an energy density (units of pressure) above 1 Mbar = 100 GPa ~ 1 Million of Atmosphere. This is comparable to the energy density of a chemical bond such as in a water molecule. Thus at 1 Mbar, chemistry as we know it changes. Experiments at NIF now routinely probe matter at 100 Mbar. At these "atomic pressure" conditions the energy density is comparable to that of the inner core electrons, so the atoms themselves change. The dense HED regime includes highly degenerate matter, with interatomic spacing less than the de Broglie wavelength. This is similar to quantum regime achieved at low temperatures [4] (e.g. Bose–Einstein condensation), however, unlike the low temperature analog, this HED regime simultaneously probes interatomic separations less than the Bohr radius. This opens an entirely new quantum mechanical domain, where core electrons - not just valence electrons - determine material properties and gives rise to core-electron-chemistry and a new structural complexity in solids. Potential exotic electronic, mechanical, and structural behavior of such matter include room temperature superconductivity, high-density electrides, first order fluid-fluid transitions, and new insulator-metal transitions. Such matter is likely quite common throughout the universe, existing in the more than 1000 recently discovered exoplanets. [3]

Importance

HED conditions at higher temperatures are important to the birth and death of stars and controlling thermonuclear fusion in the laboratory. Take as an example the birth and cooling of a neutron star. The central part of a star, ~8-20 times the mass of the Sun, fuses its way to iron and cannot go further since iron has the highest binding energy per nucleon of any element. As the iron core accumulates to ~1.4 solar masses, electron degeneracy pressure gives up against gravity and collapses. Initially the star cools by the rapid emission of neutrinos. The outer Fe surface layer (~109 K) gives rise to spontaneous pair production then reaches a temperature where the radiation pressure is comparable to the thermal pressure and where thermal pressure is comparable to coulomb interactions. [3]

Recent discoveries include metallic fluid hydrogen and superionic water. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Condensed matter physics</span> Branch of physics

Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with condensed phases of matter: systems of many constituents with strong interactions among them. More exotic condensed phases include the superconducting phase exhibited by certain materials at extremely low cryogenic temperature, the ferromagnetic and antiferromagnetic phases of spins on crystal lattices of atoms, and the Bose–Einstein condensate found in ultracold atomic systems. Condensed matter physicists seek to understand the behavior of these phases by experiments to measure various material properties, and by applying the physical laws of quantum mechanics, electromagnetism, statistical mechanics, and other physics theories to develop mathematical models.

<span class="mw-page-title-main">Nuclear fusion</span> Process of combining atomic nuclei

Nuclear fusion is a reaction in which two or more atomic nuclei, usually deuterium and tritium, combine to form one or more different atomic nuclei and subatomic particles. The difference in mass between the reactants and products is manifested as either the release or absorption of energy. This difference in mass arises due to the difference in nuclear binding energy between the atomic nuclei before and after the reaction. Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released.

<span class="mw-page-title-main">State of matter</span> Distinct forms that matter take on

In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, and some states only exist under extreme conditions, such as Bose–Einstein condensates and Fermionic condensates, neutron-degenerate matter, and quark–gluon plasma. For a complete list of all exotic states of matter, see the list of states of matter.

<span class="mw-page-title-main">Inertial confinement fusion</span> Branch of fusion energy research

Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H).

Metallic hydrogen is a phase of hydrogen in which it behaves like an electrical conductor. This phase was predicted in 1935 on theoretical grounds by Eugene Wigner and Hillard Bell Huntington.

This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.

The oxygen-burning process is a set of nuclear fusion reactions that take place in massive stars that have used up the lighter elements in their cores. Oxygen-burning is preceded by the neon-burning process and succeeded by the silicon-burning process. As the neon-burning process ends, the core of the star contracts and heats until it reaches the ignition temperature for oxygen burning. Oxygen burning reactions are similar to those of carbon burning; however, they must occur at higher temperatures and densities due to the larger Coulomb barrier of oxygen.

In astrophysics and condensed matter, electron degeneracy pressure is a quantum mechanical effect critical to understanding the stability of white dwarf stars and metal solids. It is a manifestation of the more general phenomenon of quantum degeneracy pressure.

Quark matter or QCD matter refers to any of a number of hypothetical phases of matter whose degrees of freedom include quarks and gluons, of which the prominent example is quark-gluon plasma. Several series of conferences in 2019, 2020, and 2021 were devoted to this topic.

<span class="mw-page-title-main">Nova (laser)</span> High-power laser at the Lawrence Livermore National Laboratory

Nova was a high-power laser built at the Lawrence Livermore National Laboratory (LLNL) in California, United States, in 1984 which conducted advanced inertial confinement fusion (ICF) experiments until its dismantling in 1999. Nova was the first ICF experiment built with the intention of reaching "ignition", a chain reaction of nuclear fusion that releases a large amount of energy. Although Nova failed in this goal, the data it generated clearly defined the problem as being mostly a result of Rayleigh–Taylor instability, leading to the design of the National Ignition Facility, Nova's successor. Nova also generated considerable amounts of data on high-density matter physics, regardless of the lack of ignition, which is useful both in fusion power and nuclear weapons research.

<span class="mw-page-title-main">Inertial fusion power plant</span>

Inertial Fusion Energy is a proposed approach to building a nuclear fusion power plant based on performing inertial confinement fusion at industrial scale. This approach to fusion power is still in a research phase. ICF first developed shortly after the development of the laser in 1960, but was a classified US research program during its earliest years. In 1972, John Nuckolls wrote a paper predicting that compressing a target could create conditions where fusion reactions are chained together, a process known as fusion ignition or a burning plasma. On August 8, 2021, the NIF at Livermore National Laboratory became the first ICF facility in the world to demonstrate this. This breakthrough drove the US Department of Energy to create an Inertial Fusion Energy program in 2022 with a budget of 3 million dollars in its first year.

<span class="mw-page-title-main">Warm dense matter</span> State of matter between hot plasma and cold condensed matter

Warm dense matter, abbreviated WDM, can refer to either equilibrium or non-equilibrium states of matter in a regime of temperature and density between condensed matter and hot plasma. It can be defined as the state that is too dense to be described by weakly coupled plasma physics yet too hot to be described by condensed matter physics. In this state, the potential energy of the Coulomb interaction between electrons and ions is on the same order of magnitude their thermal energy, while the latter is comparable to the Fermi energy. Typically, WDM has a density somewhere between 0.01 and 100 g/cm3 and a temperature on the order of several thousand kelvins.

<span class="mw-page-title-main">HiPER</span> Planned ICF powered by lasers

The High Power laser Energy Research facility (HiPER), is a proposed experimental laser-driven inertial confinement fusion (ICF) device undergoing preliminary design for possible construction in the European Union. As of 2019, the effort appears to be inactive.

Rydberg matter is an exotic phase of matter formed by Rydberg atoms; it was predicted around 1980 by É. A. Manykin, M. I. Ozhovan and P. P. Poluéktov. It has been formed from various elements like caesium, potassium, hydrogen and nitrogen; studies have been conducted on theoretical possibilities like sodium, beryllium, magnesium and calcium. It has been suggested to be a material that diffuse interstellar bands may arise from. Circular Rydberg states, where the outermost electron is found in a planar circular orbit, are the most long-lived, with lifetimes of up to several hours, and are the most common.

<span class="mw-page-title-main">Plasma (physics)</span> State of matter

Plasma is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, mostly in stars, but also dominating the rarefied intracluster medium and intergalactic medium. Plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field.

Fusion ignition is the point at which a nuclear fusion reaction becomes self-sustaining. This occurs when the energy being given off by the reaction heats the fuel mass more rapidly than it cools. In other words, fusion ignition is the point at which the increasing self-heating of the nuclear fusion removes the need for external heating. This is quantified by the Lawson criterion. Ignition can also be defined by the fusion energy gain factor.

<span class="mw-page-title-main">Helium cryogenics</span>

In the field of cryogenics, helium [He] is utilized for a variety of reasons. The combination of helium’s extremely low molecular weight and weak interatomic reactions yield interesting properties when helium is cooled below its critical temperature of 5.2 K to form a liquid. Even at absolute zero (0K), helium does not condense to form a solid under ambient pressure. In this state, the zero point vibrational energies of helium are comparable to very weak interatomic binding interactions, thus preventing lattice formation and giving helium its fluid characteristics. Within this liquid state, helium has two phases referred to as helium I and helium II. Helium I displays thermodynamic and hydrodynamic properties of classical fluids, along with quantum characteristics. However, below its lambda point of 2.17 K, helium transitions to He II and becomes a quantum superfluid with zero viscosity.

<span class="mw-page-title-main">William J. Nellis</span> American physicist

William J. Nellis is an American physicist. He is an Associate of the Physics Department of Harvard University. His work has focused on ultra-condensed matter at extreme pressures, densities and temperatures achieved by fast dynamic compression. He is most well-known for the first experimental observation of a metallic phase of dense hydrogen, a material predicted to exist by Eugene Wigner and Hillard Bell Huntington in 1935.

<span class="mw-page-title-main">Andrea Kritcher</span> American nuclear engineer and physicist

Andrea Lynn "Annie" Kritcher is an American nuclear engineer and physicist who works at the Lawrence Livermore National Laboratory. She was responsible for the development of Hybrid-E, a capsule that enables inertial confinement fusion. She was elected Fellow of the American Physical Society in 2022.

References

  1. High Energy Density Physics.
  2. "Home". heds-center.llnl.gov.
  3. 1 2 3 4 "High energy density science: Research areas". Lawrence Livermore National Laboratory, US Department of Energy.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  4. Bergeson, Scott D.; Baalrud, Scott D.; Ellison, C. Leland; Grant, Edward; Graziani, Frank R.; Killian, Thomas C.; Murillo, Michael S.; Roberts, Jacob L.; Stanton, Liam G. (2019-10-01). "Exploring the crossover between high-energy-density plasma and ultracold neutral plasma physics". Physics of Plasmas. 26 (10): 100501. Bibcode:2019PhPl...26j0501B. doi: 10.1063/1.5119144 . ISSN   1070-664X.