Hilbert's eighth problem

Last updated

Hilbert's eighth problem is one of David Hilbert's list of open mathematical problems posed in 1900. It concerns number theory, and in particular the Riemann hypothesis, [1] although it is also concerned with the Goldbach Conjecture. The problem as stated asked for more work on the distribution of primes and generalizations of Riemann hypothesis to other rings where prime ideals take the place of primes.

Contents

Absolute value of the z-function. Hilbert's eighth problem includes the Riemann hypothesis, which states that this function can only have non-trivial zeroes along the line x = 1/2 . Riemann zeta function absolute value.png
Absolute value of the ζ-function. Hilbert's eighth problem includes the Riemann hypothesis, which states that this function can only have non-trivial zeroes along the line x = 1/2 .

Subtopics

Riemann hypothesis and generalizations

Hilbert calls for a solution to the Riemann hypothesis, which has long been regarded as the deepest open problem in mathematics. Given the solution, [2] he calls for more thorough investigation into Riemann's zeta function and the prime number theorem.

Goldbach conjecture

He calls for a solution to the Goldbach conjecture, as well as more general problems, such as finding infinitely many pairs of primes solving a fixed linear diophantine equation.

Twin prime conjecture

Generalized Riemann conjecture

Finally, he calls for mathematicians to generalize the ideas of the Riemann hypothesis to counting prime ideals in a number field.

Related Research Articles

<span class="mw-page-title-main">Conjecture</span> Proposition in mathematics that is unproven

In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's Last Theorem, have shaped much of mathematical history as new areas of mathematics are developed in order to prove them.

The Clay Mathematics Institute (CMI) is a private, non-profit foundation dedicated to increasing and disseminating mathematical knowledge. Formerly based in Peterborough, New Hampshire, the corporate address is now in Denver, Colorado. CMI's scientific activities are managed from the President's office in Oxford, United Kingdom. It gives out various awards and sponsorships to promising mathematicians. The institute was founded in 1998 through the sponsorship of Boston businessman Landon T. Clay. Harvard mathematician Arthur Jaffe was the first president of CMI.

<span class="mw-page-title-main">Enrico Bombieri</span> Italian mathematician (born 1940)

Enrico Bombieri is an Italian mathematician, known for his work in analytic number theory, Diophantine geometry, complex analysis, and group theory. Bombieri is currently Professor Emeritus in the School of Mathematics at the Institute for Advanced Study in Princeton, New Jersey. Bombieri won the Fields Medal in 1974 for his contributions to large sieve mathematics, conceptualized by Linnick 1941, and its application to the distribution of prime numbers.

<span class="mw-page-title-main">Prime number</span> Evenly divided only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

<span class="mw-page-title-main">Goldbach's conjecture</span> Even integers as sums of two primes

Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers.

<span class="mw-page-title-main">Louis de Branges de Bourcia</span> French-American mathematician

Louis de Branges de Bourcia is a French-American mathematician. He is the Edward C. Elliott Distinguished Professor of Mathematics at Purdue University in West Lafayette, Indiana. He is best known for proving the long-standing Bieberbach conjecture in 1984, now called de Branges's theorem. He claims to have proved several important conjectures in mathematics, including the generalized Riemann hypothesis.

Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm which, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.

<span class="mw-page-title-main">Goldbach's weak conjecture</span> Solved conjecture about prime numbers

In number theory, Goldbach's weak conjecture, also known as the odd Goldbach conjecture, the ternary Goldbach problem, or the 3-primes problem, states that

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.

<span class="mw-page-title-main">Hilbert's problems</span> 23 mathematical problems stated in 1900

Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the Bulletin of the American Mathematical Society.

<span class="mw-page-title-main">Analytic number theory</span> Exploring properties of the integers with complex analysis

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.

In mathematics, the Hilbert–Pólya conjecture states that the non-trivial zeros of the Riemann zeta function correspond to eigenvalues of a self-adjoint operator. It is a possible approach to the Riemann hypothesis, by means of spectral theory.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

<span class="mw-page-title-main">Landau's problems</span> Four basic unsolved problems about prime numbers

At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic problems about prime numbers. These problems were characterised in his speech as "unattackable at the present state of mathematics" and are now known as Landau's problems. They are as follows:

  1. Goldbach's conjecture: Can every even integer greater than 2 be written as the sum of two primes?
  2. Twin prime conjecture: Are there infinitely many primes p such that p + 2 is prime?
  3. Legendre's conjecture: Does there always exist at least one prime between consecutive perfect squares?
  4. Are there infinitely many primes p such that p − 1 is a perfect square? In other words: Are there infinitely many primes of the form n2 + 1?
<span class="mw-page-title-main">Riemann hypothesis</span> Conjecture on zeros of the zeta function

In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by Bernhard Riemann (1859), after whom it is named.

A timeline of number theory.

<i>The Story of Maths</i> British TV series or program

The Story of Maths is a four-part British television series outlining aspects of the history of mathematics. It was a co-production between the Open University and the BBC and aired in October 2008 on BBC Four. The material was written and presented by University of Oxford professor Marcus du Sautoy. The consultants were the Open University academics Robin Wilson, professor Jeremy Gray and June Barrow-Green. Kim Duke is credited as series producer.

The Millennium Prize Problems are seven well-known complex mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US$1 million prize for the first correct solution to each problem.

References

  1. Bombieri (2006).
  2. 1 2 Moxley (2021).