History of numerical solution of differential equations using computers

Last updated

Differential equations, [1] in particular Euler equations, [2] rose in prominence during World War II in calculating the accurate trajectory [3] of ballistics, [4] both rocket-propelled and gun or cannon type projectiles. Originally, mathematicians used the simpler calculus [5] of earlier centuries to determine velocity, thrust, elevation, curve, distance, and other parameters.

New weapons, however, such as Germany's giant cannons, the "Paris Gun [6] " (Encyclopedia Astronautica) and "Big Bertha," and the V-2 rocket, meant that projectiles would travel hundreds of miles in distance and dozens of miles in height, in all weathers. As a result, variables such as diminished wind resistance in thin atmospheres and changes in gravitational pull reduced accuracy using the historic methodology. There was the additional problem of planes that could now fly hundreds of miles an hour. Differential equations were applied to stochastic processes. Developing machines that could speed up human calculation of differential equations led in part to the creation of the modern computer through the efforts of Vannevar Bush, John von Neumann and others.

According to Mary Croarken in her paper "Computing in Britain During World War II," by 1945, the Cambridge Mathematical Laboratory created by John Lennard-Jones utilized the latest computing devices to perform the equations. These devices included a model "differential analyser," and the Mallock machine, described as "an electrical simultaneous equation solver." According to Croarken, the Ministry was also interested in the new arrival of a differential analyzer accommodating eight integrators. This exotic computing device built by Metropolitan-Vickers in 1939 consisted of wheel and disk mechanisms that could provide descriptions and solutions for differential equations. Output resulted in a plotted graph.

At the same time, in the United States, analog computer pioneer Vannevar Bush took on a similar role to that of Lennard-Jones in the military effort after President Franklin Delano Roosevelt entrusted him with the bulk of wartime research into automatic control of fire power using machines and computing devices.

According to Sarah Bergbreiter in her paper "Moving from Practice to Theory: Automatic Control after World War II," fire control for the downing of enemy aircraft by anti-aircraft guns was the priority. The analog electro-mechanical computing machines plotted the differential firing data while servos created by H.L. Hazen adapted the data to the guns for precise firing control and accuracy. Other improvements of a similar type by Bell Labs increased firing stability so that output from the differential engines could be fully used to compensate for stochastic behaviors of enemy aircraft and large guns. A new age of intelligent warfare had begun.

This work at MIT and Bell Labs would later lead to Norbert Wiener's development of the electronic computer and the science of cybernetics for the same purpose, speeding the differential calculation process exponentially and taking one more giant step toward the creation of the modern digital computer using von Neumann architecture. Dr. von Neumann was one of the original mathematicians employed in the development of differential equations for ballistic warfare.

See also

Related Research Articles

<span class="mw-page-title-main">Analog computer</span> Computer that uses continuously variable technology

An analog computer or analogue computer is a type of computer that uses the continuous variation aspect of physical phenomena such as electrical, mechanical, or hydraulic quantities to model the problem being solved. In contrast, digital computers represent varying quantities symbolically and by discrete values of both time and amplitude.

<span class="mw-page-title-main">Ballistics</span> Science of the motion of projectiles

Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially ranged weapon munitions such as bullets, unguided bombs, rockets or the like; the science or art of designing and accelerating projectiles so as to achieve a desired performance.

<span class="mw-page-title-main">History of computing</span> Aspect of history

The history of computing is longer than the history of computing hardware and modern computing technology and includes the history of methods intended for pen and paper or for chalk and slate, with or without the aid of tables.

<span class="mw-page-title-main">External ballistics</span> Behavior of projectiles in flight

External ballistics or exterior ballistics is the part of ballistics that deals with the behavior of a projectile in flight. The projectile may be powered or un-powered, guided or unguided, spin or fin stabilized, flying through an atmosphere or in the vacuum of space, but most certainly flying under the influence of a gravitational field.

<span class="mw-page-title-main">Differential analyser</span>

The differential analyser is a mechanical analogue computer designed to solve differential equations by integration, using wheel-and-disc mechanisms to perform the integration. It was one of the first advanced computing devices to be used operationally. The original machines could not add, but then it was noticed that if the two wheels of a rear differential are turned, the drive shaft will compute the average of the left and right wheels. A simple gear ratio of 1:2 then enables multiplication by two, so addition are achieved. Multiplication is just a special case of integration, namely integrating a constant function.

<span class="mw-page-title-main">Herman Goldstine</span> American mathematician (1913–2004)

Herman Heine Goldstine was a mathematician and computer scientist, who worked as the director of the IAS machine at Princeton University's Institute for Advanced Study and helped to develop ENIAC, the first of the modern electronic digital computers. He subsequently worked for many years at IBM as an IBM Fellow, the company's most prestigious technical position.

The First Draft of a Report on the EDVAC is an incomplete 101-page document written by John von Neumann and distributed on June 30, 1945 by Herman Goldstine, security officer on the classified ENIAC project. It contains the first published description of the logical design of a computer using the stored-program concept, which has controversially come to be known as the von Neumann architecture.

<span class="mw-page-title-main">Douglas Hartree</span> British mathematician and physicist

Douglas Rayner Hartree was an English mathematician and physicist most famous for the development of numerical analysis and its application to the Hartree–Fock equations of atomic physics and the construction of a differential analyser using Meccano.

<span class="mw-page-title-main">Differential equation</span> Type of functional equation (mathematics)

In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology.

<span class="mw-page-title-main">Ballistic coefficient</span> Physical measure of overcoming air resistance

In ballistics, the ballistic coefficient of a body is a measure of its ability to overcome air resistance in flight. It is inversely proportional to the negative acceleration: a high number indicates a low negative acceleration—the drag on the body is small in proportion to its mass. BC can be expressed with the units kilograms per square meter (kg/m2) or pounds per square inch (lb/in2).

<span class="mw-page-title-main">Kathleen Antonelli</span> Irish–American computer programmer (1921–2006)

Kathleen Rita Antonelli, known as Kay McNulty, was an Irish-born American computer programmer and one of the six original programmers of the ENIAC, one of the first general-purpose electronic digital computers. The other five ENIAC programmers were Betty Holberton, Ruth Teitelbaum, Frances Spence, Marlyn Meltzer, and Jean Bartik.

<span class="mw-page-title-main">Rangekeeper</span>

Rangekeepers were electromechanical fire control computers used primarily during the early part of the 20th century. They were sophisticated analog computers whose development reached its zenith following World War II, specifically the Computer Mk 47 in the Mk 68 Gun Fire Control system. During World War II, rangekeepers directed gunfire on land, sea, and in the air. While rangekeepers were widely deployed, the most sophisticated rangekeepers were mounted on warships to direct the fire of long-range guns.

In naval gunnery, when long-range guns became available, an enemy ship would move some distance after the shells were fired. It became necessary to figure out where the enemy ship, the target, was going to be when the shells arrived. The process of keeping track of where the ship was likely to be was called rangekeeping, because the distance to the target—the range—was a very important factor in aiming the guns accurately. As time passed, train, the direction to the target, also became part of rangekeeping, but tradition kept the term alive.

The gun data computer was a series of artillery computers used by the U.S. Army for coastal artillery, field artillery and anti-aircraft artillery applications. In antiaircraft applications they were used in conjunction with a director.

<span class="mw-page-title-main">Mark I Fire Control Computer</span> This was the computer primarily for antiaircraft defense, an unofficial engineering landmark

The Mark 1, and later the Mark 1A, Fire Control Computer was a component of the Mark 37 Gun Fire Control System deployed by the United States Navy during World War II and up to 1991 and possibly later. It was originally developed by Hannibal C. Ford of the Ford Instrument Company. and William Newell. It was used on a variety of ships, ranging from destroyers to battleships. The Mark 37 system used tachymetric target motion prediction to compute a fire control solution. It contained a target simulator which was updated by further target tracking until it matched.

<span class="mw-page-title-main">Mechanical computer</span> Computer built from mechanical components such as levers and gears

A mechanical computer is a computer built from mechanical components such as levers and gears rather than electronic components. The most common examples are adding machines and mechanical counters, which use the turning of gears to increment output displays. More complex examples could carry out multiplication and division—Friden used a moving head which paused at each column—and even differential analysis. One model, the Ascota 170 accounting machine sold in the 1960s calculated square roots.

<span class="mw-page-title-main">Timeline of calculus and mathematical analysis</span> Summary of advancements in Calculus

A timeline of calculus and mathematical analysis.

The Ballistic Research Laboratory (BRL) was a leading U.S. Army research establishment situated at Aberdeen Proving Ground, Maryland that specialized in ballistics as well as vulnerability and lethality analysis. BRL served as a major Army center for research and development in technologies related to weapon phenomena, armor, electronic devices, and high-speed computing. In 1992, BRL's mission, personnel, and facilities were incorporated into the newly created Army Research Laboratory (ARL), and BRL was disestablished.

<span class="mw-page-title-main">Torpedo Data Computer</span>

The Torpedo Data Computer (TDC) was an early electromechanical analog computer used for torpedo fire-control on American submarines during World War II. Britain, Germany, and Japan also developed automated torpedo fire control equipment, but none were as advanced as the US Navy's TDC, as it was able to automatically track the target rather than simply offering an instantaneous firing solution. This unique capability of the TDC set the standard for submarine torpedo fire control during World War II.

The following is a timeline of scientific computing, also known as computational science.

References

  1. W., Weisstein, Eric. "Differential Equation". mathworld.wolfram.com. Retrieved 2016-03-08.
  2. W., Weisstein, Eric. "Euler Differential Equation". mathworld.wolfram.com. Retrieved 2016-03-08.
  3. "Projectile motion - GeoGebra Dynamic worksheet". archive.geogebra.org. Retrieved 2016-03-08.
  4. "exterior ballistics". www.exteriorballistics.com. Retrieved 2016-03-08.
  5. W., Weisstein, Eric. "Differential Equations -- from Wolfram MathWorld". mathworld.wolfram.com. Retrieved 2016-03-08.
  6. "Paris Gun". www.astronautix.com. Archived from the original on 2016-03-11. Retrieved 2016-03-08.