Holyhedron

Last updated
492 face Holyhedron outer view Holyhedra, outer view.png
492 face Holyhedron outer view
492 face Holyhedron with some pieces removed for inner view Holyhedra - Inner view.png
492 face Holyhedron with some pieces removed for inner view
Unsolved problem in mathematics:
What is the lowest number of faces possible for a holyhedron?

In mathematics, a holyhedron is a type of 3-dimensional geometric body: a polyhedron each of whose faces contains at least one polygon-shaped hole, and whose holes' boundaries share no point with each other or the face's boundary. [1]

The concept was first introduced by John H. Conway; the term "holyhedron" was coined by David W. Wilson in 1997 as a pun involving polyhedra and holes. Conway also offered a prize of 10,000 USD, divided by the number of faces, for finding an example, [2] asking:

Is there a polyhedron in Euclidean three-dimensional space that has only finitely many plane faces, each of which is a closed connected subset of the appropriate plane whose relative interior in that plane is multiply connected?

No actual holyhedron was constructed until 1999, when Jade P. Vinson presented an example of a holyhedron with a total of 78,585,627 faces; [3] [4] another example was subsequently given by Don Hatch, who presented a holyhedron with 492 faces in 2003, worth about 20.33 USD prize money. [1]

Related Research Articles

<span class="mw-page-title-main">Cube</span> Solid object with six equal square faces

In geometry, a cube or regular hexahedron is a three-dimensional solid object bounded by six congruent square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It is a type of parallelepiped, with pairs of parallel opposite faces, and more specifically a rhombohedron, with congruent edges, and a rectangular cuboid, with right angles between pairs of intersecting faces and pairs of intersecting edges. It is an example of many classes of polyhedra: Platonic solid, regular polyhedron, parallelohedron, zonohedron, and plesiohedron. The dual polyhedron of a cube is the regular octahedron.

<span class="mw-page-title-main">Dual polyhedron</span> Polyhedron associated with another by swapping vertices for faces

In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.

In geometry, a Johnson solid, sometimes also known as a Johnson–Zalgaller solid, is a convex polyhedron whose faces are regular polygons. They are sometimes defined to exclude the uniform polyhedrons. There are ninety-two solids with such a property: the first solids are the pyramids, cupolas. and a rotunda; some of the solids may be constructed by attaching with those previous solids, whereas others may not. These solids are named after mathematicians Norman Johnson and Victor Zalgaller.

<span class="mw-page-title-main">Polyhedron</span> Three-dimensional shape with flat faces, straight edges, and sharp corners

In geometry, a polyhedron is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.

<span class="mw-page-title-main">Triangular bipyramid</span> Two tetrahedra joined by one face

A triangular bipyramid is a hexahedron with six triangular faces constructed by attaching two tetrahedra face-to-face. The same shape is also known as a triangular dipyramid or trigonal bipyramid. If these tetrahedra are regular, all faces of a triangular bipyramid are equilateral. It is an example of a deltahedron, composite polyhedron, and Johnson solid.

<span class="mw-page-title-main">Polycube</span> Shape made from cubes joined together

A polycube is a solid figure formed by joining one or more equal cubes face to face. Polycubes are the three-dimensional analogues of the planar polyominoes. The Soma cube, the Bedlam cube, the Diabolical cube, the Slothouber–Graatsma puzzle, and the Conway puzzle are examples of packing problems based on polycubes.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron, composite polyhedron, and Johnson solid.

<span class="mw-page-title-main">Pentagonal bipyramid</span> Two pentagonal pyramids joined at the bases

The pentagonal bipyramid is a polyhedron with ten triangular faces. It is constructed by attaching two pentagonal pyramids to each of their bases. If the triangular faces are equilateral, the pentagonal bipyramid is an example of deltahedra, composite polyhedron, and Johnson solid.

<span class="mw-page-title-main">Net (polyhedron)</span> Edge-joined polygons which fold into a polyhedron

In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.

<span class="mw-page-title-main">Honeycomb (geometry)</span> Tiling of euclidean or hyperbolic space of three or more dimensions

In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.

In geometry, a skew apeirohedron is an infinite skew polyhedron consisting of nonplanar faces or nonplanar vertex figures, allowing the figure to extend indefinitely without folding round to form a closed surface.

<span class="mw-page-title-main">Edge (geometry)</span> Line segment joining two adjacent vertices in a polygon or polytope

In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope. In a polygon, an edge is a line segment on the boundary, and is often called a polygon side. In a polyhedron or more generally a polytope, an edge is a line segment where two faces meet. A segment joining two vertices while passing through the interior or exterior is not an edge but instead is called a diagonal.

In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.

<span class="mw-page-title-main">Monostatic polytope</span>

In geometry, a monostatic polytope is a d-polytope which "can stand on only one face". They were described in 1969 by J. H. Conway, M. Goldberg, R. K. Guy and K. C. Knowlton. The monostatic polytope in 3-space constructed independently by Guy and Knowlton has 19 faces. In 2012, Andras Bezdek discovered an 18-face solution, and in 2014, Alex Reshetov published a 14-face polyhedron.

<span class="mw-page-title-main">Toroidal polyhedron</span> Partition of a toroidal surface into polygons

In geometry, a toroidal polyhedron is a polyhedron which is also a toroid, having a topological genus of 1 or greater. Notable examples include the Császár and Szilassi polyhedra.

The Alexandrov uniqueness theorem is a rigidity theorem in mathematics, describing three-dimensional convex polyhedra in terms of the distances between points on their surfaces. It implies that convex polyhedra with distinct shapes from each other also have distinct metric spaces of surface distances, and it characterizes the metric spaces that come from the surface distances on polyhedra. It is named after Soviet mathematician Aleksandr Danilovich Aleksandrov, who published it in the 1940s.

<span class="mw-page-title-main">Regular skew apeirohedron</span> Infinite regular skew polyhedron

In geometry, a regular skew apeirohedron is an infinite regular skew polyhedron. They have either skew regular faces or skew regular vertex figures.

<span class="mw-page-title-main">Ideal polyhedron</span> Shape in hyperbolic geometry

In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space.

<span class="mw-page-title-main">Blooming (geometry)</span>

In the geometry of convex polyhedra, blooming or continuous blooming is a continuous three-dimensional motion of the surface of the polyhedron, cut to form a polyhedral net, from the polyhedron into a flat and non-self-overlapping placement of the net in a plane. As in rigid origami, the polygons of the net must remain individually flat throughout the motion, and are not allowed to intersect or cross through each other. A blooming, reversed to go from the flat net to a polyhedron, can be thought of intuitively as a way to fold the polyhedron from a paper net without bending the paper except at its designated creases.

References

  1. 1 2 Weisstein, Eric W. "Holyhedron". MathWorld .
  2. Demaine, Erik D.; O'Rourke, Joseph (September 1999). "Computational geometry column 37". ACM SIGACT News. 30 (3): 39–42. doi:10.1145/333623.333625. S2CID   9358750.
  3. Peterson, Ivars (December 11, 2002). "Punctured Polyhedra". Science News. Archived from the original on March 4, 2016.
  4. Vinson, J. (2000). "On holyhedra". Discrete & Computational Geometry . 24 (1): 85–104. doi: 10.1007/s004540010033 . MR   1765235.