Horizontal resistance

Last updated

In genetics, the term horizontal resistance was first used by J. E. Vanderplank [1] to describe many-gene resistance, which is sometimes also called generalized resistance. [2] This contrasts with the term vertical resistance which was used to describe single-gene resistance. Raoul A. Robinson [3] further refined the definition of horizontal resistance. Unlike vertical resistance and parasitic ability, horizontal resistance and horizontal parasitic ability are entirely independent of each other in genetic terms.

In the first round of breeding for horizontal resistance, plants are exposed to pathogens and selected for partial resistance. Those with no resistance die, and plants unaffected by the pathogen have vertical resistance and are removed. The remaining plants have partial resistance and their seed is stored and bred back up to sufficient volume for further testing. The hope is that in these remaining plants are multiple types of partial-resistance genes, and by crossbreeding this pool back on itself, multiple partial resistance genes will come together and provide resistance to a larger variety of pathogens.

Successive rounds of breeding for horizontal resistance proceed in a more traditional fashion, selecting plants for disease resistance as measured by yield. These plants are exposed to native regional pathogens, and given minimal assistance in fighting them. [4]

Related Research Articles

<span class="mw-page-title-main">Plant pathology</span> Scientific study of plant diseases

Plant pathology is the scientific study of diseases in plants caused by pathogens and environmental conditions. Organisms that cause infectious disease include fungi, oomycetes, bacteria, viruses, viroids, virus-like organisms, phytoplasmas, protozoa, nematodes and parasitic plants. Not included are ectoparasites like insects, mites, vertebrate, or other pests that affect plant health by eating plant tissues and causing injury that may admit plant pathogens. Plant pathology also involves the study of pathogen identification, disease etiology, disease cycles, economic impact, plant disease epidemiology, plant disease resistance, how plant diseases affect humans and animals, pathosystem genetics, and management of plant diseases.

There are a number of lines of defence against pests and diseases in the orchard, principal among these being the practice of good husbandry, creating healthy soil and ensuring high standards of garden hygiene. But no matter how diverse and healthy the garden eco-system may be, there will always be a degree of disease and pest presence. In many ways, some level of pathogen population in the garden can be not only acceptable but desirable as they are indicative of a generally healthful and diverse environment, and add to the overall robustness of the system as an immunity to such detrimental influences will build up, particularly in a balanced polycultural regime. Indeed, most of the plants we grow will tend to be selected because they are trouble free, and those that are more susceptible to attack will have fallen by the wayside over time. However, most farmers find it unacceptable that the food crops they grow are damaged by pests.

<span class="mw-page-title-main">Horizontal gene transfer</span> Type of nonhereditary genetic change

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the evolution of many organisms. HGT is influencing scientific understanding of higher order evolution while more significantly shifting perspectives on bacterial evolution.

Fungicides are pesticides used to kill parasitic fungi or their spores. They are most commonly chemical compounds, but may include biocontrols and fungistatics. Fungi can cause serious damage in agriculture, resulting in critical losses of yield, quality, and profit. Fungicides are used both in agriculture and to fight fungal infections in animals. Fungicides are also used to control oomycetes, which are not taxonomically/genetically fungi, although sharing similar methods of infecting plants. Fungicides can either be contact, translaminar or systemic. Contact fungicides are not taken up into the plant tissue and protect only the plant where the spray is deposited. Translaminar fungicides redistribute the fungicide from the upper, sprayed leaf surface to the lower, unsprayed surface. Systemic fungicides are taken up and redistributed through the xylem vessels. Few fungicides move to all parts of a plant. Some are locally systemic, and some move upward.

A pathosystem is a subsystem of an ecosystem and is defined by the phenomenon of parasitism. A plant pathosystem is one in which the host species is a plant. The parasite is any species in which the individual spends a significant part of its lifespan inhabiting one host individual and obtaining nutrients from it. The parasite may thus be an insect, mite, nematode, parasitic Angiosperm, fungus, bacterium, mycoplasma, virus or viroid. Other consumers, however, such as mammalian and avian herbivores, which graze populations of plants, are normally considered to be outside the conceptual boundaries of the plant pathosystem.

<i>Cronartium ribicola</i> Species of rust fungus

Cronartium ribicola is a species of rust fungus in the family Cronartiaceae that causes the disease white pine blister rust. Other names include: Rouille vésiculeuse du pin blanc pin (French), white pine Blasenrost (German), moho ampolla del pino blanco (Spanish).

Raoul A. Robinson was a Canadian/British plant scientist with more than forty years of wide-ranging global experience in crop improvement for both commercial and subsistence agriculture. He is best known for his application of system theory to crop pathosystems and the elucidation of the concepts of horizontal and vertical resistance and their implication on breeding for durable resistance.

The gene-for-gene relationship was discovered by Harold Henry Flor who was working with rust (Melampsora lini) of flax (Linum usitatissimum). Flor showed that the inheritance of both resistance in the host and parasite ability to cause disease is controlled by pairs of matching genes. One is a plant gene called the resistance (R) gene. The other is a parasite gene called the avirulence (Avr) gene. Plants producing a specific R gene product are resistant towards a pathogen that produces the corresponding Avr gene product. Gene-for-gene relationships are a widespread and very important aspect of plant disease resistance. Another example can be seen with Lactuca serriola versus Bremia lactucae.

The term vertical resistance, used commonly in context of plant selection, was first used by J.E. Vanderplank to describe single-gene resistance. This contrasted the term horizontal resistance which was used to describe many-gene resistance. Raoul A. Robinson further refined the definition of vertical resistance, emphasizing that in vertical resistance there are single genes for resistance in the host plant, and there are also single genes for parasitic ability in the parasite. This phenomenon is known as the gene-for-gene relationship, and it is the defining character of vertical resistance.

This is a glossary of some of the terms used in phytopathology.

<i>Xanthomonas campestris</i> Species of bacterium

Xanthomonas campestris is a gram-negative, obligate aerobic bacterium that is a member of the Xanthomonas genus, which is a group of bacteria that are commonly known for their association with plant disease. The species is considered to be dominant amongst its genus, as it originally had over 140 identified pathovars and has been found to infect both monocotyledonous and dicotyledonous plants of economical value with various plant diseases. This includes "black rot" in cruciferous vegetables, bacterial wilt of turfgrass, bacterial blight, and leaf spot, for example.

<i>Thielaviopsis basicola</i> Species of fungus

Thielaviopsis basicola is the plant-pathogen fungus responsible for black root rot disease. This particular disease has a large host range, affecting woody ornamentals, herbaceous ornamentals, agronomic crops, and even vegetable crops. Examples of susceptible hosts include petunia, pansy, poinsettia, tobacco, cotton, carrot, lettuce, tomato, and others. Symptoms of this disease resemble nutrient deficiency but are truly a result of the decaying root systems of plants. Common symptoms include chlorotic lower foliage, yellowing of plant, stunting or wilting, and black lesions along the roots. The lesions along the roots may appear red at first, getting darker and turning black as the disease progresses. Black root lesions that begin in the middle of a root can also spread further along the roots in either direction. Due to the nature of the pathogen, the disease can easily be identified by the black lesions along the roots, especially when compared to healthy roots. The black lesions that appear along the roots are a result of the formation of chlamydospores, resting spores of the fungus that contribute to its pathogenicity. The chlamydospores are a dark brown-black color and cause the "discoloration" of the roots when they are produced in large amounts.

Marker assisted selection or marker aided selection (MAS) is an indirect selection process where a trait of interest is selected based on a marker linked to a trait of interest, rather than on the trait itself. This process has been extensively researched and proposed for plant- and animal- breeding.

Phoma macdonaldii is a plant pathogenic fungus that is a major causal force for the disease Phoma Black Stem.

<i>Thinopyrum intermedium</i> Species of flowering plant

Thinopyrum intermedium, known commonly as intermediate wheatgrass, is a sod-forming perennial grass in the Triticeae tribe of Pooideae native to Europe and Western Asia. It is part of a group of plants commonly called wheatgrasses because of the similarity of their seed heads or ears to common wheat. However, wheatgrasses generally are perennial, while wheat is an annual. It has gained the Royal Horticultural Society's Award of Garden Merit as an ornamental.

Biotic stress is stress that occurs as a result of damage done to an organism by other living organisms, such as bacteria, viruses, fungi, parasites, beneficial and harmful insects, weeds, and cultivated or native plants. It is different from abiotic stress, which is the negative impact of non-living factors on the organisms such as temperature, sunlight, wind, salinity, flooding and drought. The types of biotic stresses imposed on an organism depend the climate where it lives as well as the species' ability to resist particular stresses. Biotic stress remains a broadly defined term and those who study it face many challenges, such as the greater difficulty in controlling biotic stresses in an experimental context compared to abiotic stress.

<span class="mw-page-title-main">Plant disease resistance</span> Ability of a plant to stand up to trouble

Plant disease resistance protects plants from pathogens in two ways: by pre-formed structures and chemicals, and by infection-induced responses of the immune system. Relative to a susceptible plant, disease resistance is the reduction of pathogen growth on or in the plant, while the term disease tolerance describes plants that exhibit little disease damage despite substantial pathogen levels. Disease outcome is determined by the three-way interaction of the pathogen, the plant and the environmental conditions.

In biology, a pathogen, in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ.

The Vertifolia effect is a well documented phenomenon in the fields of plant breeding and plant pathology. It is characterized by the erosion of a crop’s horizontal resistance to disease during a breeding cycle due to the presence of strong vertical resistance, characterized by the presence of R genes. This effect was observed in late blight of potato. This phenomenon was first described by J.E. Van der Plank in his 1963 book Plant Disease: Epidemics and Control. Van der Plank observed that under artificial selection the potato variety Vertifolia had stronger vertical resistance to the potato late blight pathogen, Phytophthora infestans, as measured by the presence of specific R genes. However, when the pathogen overcame these R genes Vertifolia exhibited a greater loss of horizontal resistance than varieties with fewer R genes and lower vertical resistance. This effect suggests that when a pathogen evolves an avirulence gene to counteract a variety’s R gene, that variety will be more susceptible to the pathogen than other varieties.

<span class="mw-page-title-main">Gene-for-gene interactions in rust fungi</span>

The study of gene-for-gene interactions uncovers genetic components, evolutionary impacts, and ecological/economic implications between rust fungi and plants. Rust fungi utilize the gene-for-gene interaction to invade host plants. Conversely, host plants utilize the gene-for-gene interaction to prevent invasion of rust fungi.

References

  1. Vanderplank, J.E. (1963) Plant Diseases: Epidemics and Control. Academic Press, New York and London, 349pp.
  2. P.J. Keane (2012-04-04), "Horizontal or Generalized Resistance to Pathogens in Plants", in Christian Joseph Cumagun (ed.), Plant Pathology, InTech, CiteSeerX   10.1.1.462.1678 , ISBN   978-953-51-0489-6
  3. Robinson, Raoul A. (1976) Plant Pathosystems. Springer-Verlag, Berlin, Heidelberg, New York, 184pp.
  4. Don Lotter (2004), Beyond GMO … the REAL answer to healthy, disease resistant crops, Rodale Institute, retrieved 29 March 2016