Hot gas welding

Last updated

Hot-gas welding is a manual plastic welding process for joining thermoplastic materials. A hot-gas torch is used to direct hot air to both the joint surface and weld rod, heating the materials to their softening temperature. Application of pressure on the heated weld rod to the joint surface bonds the materials together to form a completed weld. This technique is not easily automatized and is primarily used for repairs or individual manufacturing needs of small or complex components.

Contents

Welding techniques

There are two common forms of welding techniques used in hot gas welding: hand welding and speed welding. Tack welding may be utilized to set the components in position to perform the actual welding process.

Hand welding

Hand welding is a technique in which the weld rod is applied to the joint by the welder directly. This is also referenced as free-hand welding or fan welding. [1] The hot gas torch is maneuvered in one hand to heat both the weld rod and joint surfaces in a pendulum manner in quick succession. Pressure is applied to the welding rod and controlled by hand without the assistance of a nozzle. This technique is suitable for most configurations and can be beneficial for welding tight, constrained areas or complex joint designs since application of the welding rod is only limited to the achievable welding positions.

Speed welding

Speed welding employs a specially designed nozzle which enables the hot gas torch and weld rod to be one cohesive system. The nozzle facilitates application of the weld rod to the joint through a feeder tube. The nozzle evenly heats the weld rod material and allows for a controlled application of pressure. The bottom of the nozzle is designed to heat the joint surface and guide the weld rod into the groove. Nozzles are manufactured for the feeder tubes to accommodate specific welding rod shapes and dimensions and are available for round or triangular rods of common sizes. Use of speed welding is limited to applications of simple joint design and orientation due to the size of the nozzle and maneuverability of the system. [1]

Process parameters

Gas temperature, application pressure, weld travel speed, gas flow rate, and torch orientation all influence the integrity and mechanical properties of the finished weld. Gas temperature and flow rate are controllable parameters based on system inputs. Application pressure, weld travel speed, and torch orientation are all dependent upon the operator performing the weld. These parameters are interrelated and all have a significant impact on the final quality of the weld.

Gas temperature and flow rate

Gas temperature is a controlled input that should be monitored for accuracy prior to initiating the welding process. Hot gas temperatures are selected at values above the material's melting or glass transition temperature. Sufficient temperature is required to overcome a materials activation energy, resulting in a reduction of the viscosity and an increase in flowability to support diffusion across the weld interface. Prolonged exposure to elevated temperatures exceeding material manufacturer's recommendations can result in oxidation, distortion, or molecular deterioration, which can lead to joint failure. [2] Calibration and verification of the output should be performed after the gas temperature has stabilized in the welding gun. Speed tip nozzles focus heat directly on the joint in a specific region, resulting in effective heat transfer to the weld surfaces. If sufficient weld travel speed is not maintained, recommended welding temperatures above the glass or melting temperature of the material in these weld regions can be exceeded and lead to defects. [1]

Thermal expansion from the welding process may result in distortion and development of weld defects if part components are not properly secured. Work surface material should also be considered to avoid heat losses which may result in lack of penetration or lack of fusion due to inadequate heating of the joint surfaces. [1] [2]

Sufficient hot gas flow rate is necessary to maintain adequate, even heating of weld rod and joint surfaces. Flow rate can be controlled through the use of a blower or an air compressor. To avoid weld contamination, supplied hot gas should be free of moisture and should not contain impurities. A properly sized blower or compressor can be utilized for multiple hot gas torches if one is not integrated in the individual welding gun. [1]

Welding energy

The welding energy imparted on the weld surface during hot gas welding can be used to predict the overall strength of the finished joint. Welding energy (Ew) is determined using the gas temperature and flow rate using the following relationship:

where hot gas parameters include the specific heat (cp), initial and final temperature (T1 and T2, respectively), volumetric flow rate (qv), and density (). These properties are divided by the weld travel speed (Sw). [2] Studies performed on semi-crystalline materials conclude the higher the welding energy input on the surface, the higher the joint strength. [2] A high welding energy has been related to a lower welding surface viscosity. A less viscous surface allows for increased diffusion across the weld interface resulting in a stronger weld, whereas a higher viscosity does not support diffusion as easily and can result in lower joint strength. [3]

Hot gas properties vary depending on the type of medium used for welding. Air is used in most applications. In certain instances, the material manufacturer may recommend use of other types of hot gas such as carbon dioxide or nitrogen when a potential health and safety risk may be present under other welding conditions. [1]

Pressure

Application pressure impacts the overall weld penetration and joint quality. Pressure is manually applied either through the weld rod directly or to the speed tip nozzle. [3] Welding technique and joint design both influence the amount of pressure that is translated to the weld.

Inadequate pressure can result in weld interface porosity, poor wettability, and lack of fusion defects. Hot gas can become trapped between the weld rod and joint surface resulting in pore formation. One way to reduce the presence of pores is to establish a root gap as part of the joint design through which hot gases can escape. [2] Unfused regions of the weld and presence of pores can significantly reduce the overall strength of the joint.

Pressure application can be less effective in hand welding compared to utilizing a speed tip; however both are dependent upon the skill of the operator. Double-V joint designs are well-suited for carrying higher effective welding pressure as compared to single-V joints and are less prone to fusion deficiencies. [2]

Weld travel speed

Material properties of the components being welded, hot gas temperature, size of the weld rod, and technique utilized all influence the weld travel speed. Due to the manual nature of hot gas welding, this process is typically slower than other thermoplastic welding methods. Higher weld travel speed can be obtained using a speed tip. Localization of high temperature gas on the weld surface allows for thermoplastics to heat up faster and flow easier, resulting in an increase in capable welding speed. [2] Too fast of a welding speed can stretch the weld rod, unevenly filling the joint and compromising the overall weld strength. If the speed is too slow, weld damage from extended high temperature exposure can result.

Torch orientation

The angle of orientation of the welding torch and welding rod is dependent upon the welding technique, rod material, and joint design.

Speed welding

To establish consistent pressure while maintaining proper alignment to the joint groove during speed tip welding, it is recommended that the welder position their grip below the hot gas gun. Sufficient penetration and weld quality is achieved when the weld rod is slightly pressured as it is fed through the feeder tube and a simultaneous downward pulling motion is maintained at a constant travel speed throughout the welding pass. [1]

Hand welding

Orientation of the welding rod to the groove is material dependent in hand welding applications. Recommended weld rod angles are established for materials based on achieving proper penetration without introducing flaws or additional stresses in the joint. Accurate positioning will result in a visible “bow wave” effect at the root, indicating diffusion across the weld interface occurred. Improper angle can result in uneven heating and weld defects or insufficient pressure to produce a strong joint. [1]

Welder qualifications

In industrial applications, hot gas welding processes are successfully executed by trained and qualified operators who have been certified in the process as detailed in EN 13067 or AWS B2.4. [3] EN 13067 is the International standard for qualification of welders for thermoplastic welded assemblies, which includes hot gas welding techniques and processes. The American Welding Society (AWS) published AWS B2.4 as an American standard for qualification for thermoplastic welding procedures and performance. These standards detail proper technique and joint design to be employed for various welding situations.

Related Research Articles

Welding Fabrication or sculptural process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature metal-joining techniques such as brazing and soldering, which do not melt the base metal.

Brazing High-temperature soldering; metal-joining technique by high-temperature molten metal filling

Brazing is a metal-joining process in which two or more metal items are joined together by melting and flowing a filler metal into the joint, the filler metal having a lower melting point than the adjoining metal.

Forge welding (FOW) is a solid-state welding process that joins two pieces of metal by heating them to a high temperature and then hammering them together. It may also consist of heating and forcing the metals together with presses or other means, creating enough pressure to cause plastic deformation at the weld surfaces. The process is one of the simplest methods of joining metals and has been used since ancient times. Forge welding is versatile, being able to join a host of similar and dissimilar metals. With the invention of electrical and gas welding methods during the Industrial Revolution, manual forge-welding has been largely replaced, although automated forge-welding is a common manufacturing process.

Plastic welding Welding of semi-finished plastic materials

Plastic welding is welding for semi-finished plastic materials, and is described in ISO 472 as a process of uniting softened surfaces of materials, generally with the aid of heat. Welding of thermoplastics is accomplished in three sequential stages, namely surface preparation, application of heat and pressure, and cooling. Numerous welding methods have been developed for the joining of semi-finished plastic materials. Based on the mechanism of heat generation at the welding interface, welding methods for thermoplastics can be classified as external and internal heating methods, as shown in Fig 1.

Friction welding (FRW) is a solid-state welding process that generates heat through mechanical friction between workpieces in relative motion to one another, with the addition of a lateral force called "upset" to plastically displace and fuse the materials. Friction welding is used with metals and thermoplastics in a wide variety of aviation and automotive applications. Friction welding has also been shown to work on wood.

Laser beam welding

Laser beam welding (LBW) is a welding technique used to join pieces of metal or thermoplastics through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates. The process is frequently used in high volume applications using automation, as in the automotive industry. It is based on keyhole or penetration mode welding.

Gas tungsten arc welding Welding process

Gas tungsten arc welding (GTAW), also known as tungsten inert gas (TIG) welding, is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode is protected from oxidation or other atmospheric contamination by an inert shielding gas, and a filler metal is normally used, though some welds, known as autogenous welds, or fusion welds do not require it. When helium is used, this is known as heliarc welding. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma. GTAW is most commonly used to weld thin sections of stainless steel and non-ferrous metals such as aluminum, magnesium, and copper alloys. The process grants the operator greater control over the weld than competing processes such as shielded metal arc welding and gas metal arc welding, allowing for stronger, higher quality welds. However, GTAW is comparatively more complex and difficult to master, and furthermore, it is significantly slower than most other welding techniques. A related process, plasma arc welding, uses a slightly different welding torch to create a more focused welding arc and as a result is often automated.

Plasma arc welding

Plasma arc welding (PAW) is an arc welding process similar to gas tungsten arc welding (GTAW). The electric arc is formed between an electrode and the workpiece. The key difference from GTAW is that in PAW, the electrode is positioned within the body of the torch, so the plasma arc is separated from the shielding gas envelope. The plasma is then forced through a fine-bore copper nozzle which constricts the arc and the plasma exits the orifice at high velocities and a temperature approaching 28,000 °C (50,000 °F) or higher.

Thermal spraying Coating process for applying heated materials to a surface

Thermal spraying techniques are coating processes in which melted materials are sprayed onto a surface. The "feedstock" is heated by electrical or chemical means.

Oxy-fuel welding and cutting Metalworking technique using a gaseous fuel and oxygen

Oxy-fuel welding and oxy-fuel cutting are processes that use fuel gases and oxygen to weld or cut metals. French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene welding in 1903. Pure oxygen, instead of air, is used to increase the flame temperature to allow localized melting of the workpiece material in a room environment. A common propane/air flame burns at about 2,250 K, a propane/oxygen flame burns at about 2,526 K, an oxyhydrogen flame burns at 3,073 K and an acetylene/oxygen flame burns at about 3,773 K.

Hot plate welding, also called heated tool welding, is a thermal welding technique for joining thermoplastics. A heated tool is placed against or near the two surfaces to be joined in order to melt them. Then, the heat source is removed, and the surfaces are brought together under pressure. Hot plate welding has relatively long cycle times, ranging from 10 seconds to minutes, compared to vibration or ultrasonic welding. However, its simplicity and ability to produce strong joints in almost all thermoplastics make it widely used in mass production and for large structures, like large-diameter plastic pipes. Different inspection techniques are implemented in order to identify various discontinuities or cracks.

Gas metal arc welding Welding process

Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) welding or metal active gas (MAG) welding, is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to melt and join. Along with the wire electrode, a shielding gas feeds through the welding gun, which shields the process from atmospheric contamination.

Sensors for arc welding are devices which – as a part of a fully mechanised welding equipment – are capable to acquire information about position and, if possible, about the geometry of the intended weld at the workpiece and to provide respective data in a suitable form for the control of the weld torch position and, if possible, for the arc welding process parameters.

Rheological Weldability (RW) of thermoplastics considers the materials flow characteristics in determining the weldability of the given material. The process of welding thermal plastics requires three general steps, first is surface preparation. The second step is the application of heat and pressure to create intimate contact between the components being joined and initiate inter-molecular diffusion across the joint and the third step is cooling. RW can be used to determine the effectiveness of the second step of the process for given materials.

Diffusion bonding

Diffusion bonding or diffusion welding is a solid-state welding technique used in metalworking, capable of joining similar and dissimilar metals. It operates on the principle of solid-state diffusion, wherein the atoms of two solid, metallic surfaces intersperse themselves over time. This is typically accomplished at an elevated temperature, approximately 50-75% of the absolute melting temperature of the materials. Diffusion bonding is usually implemented by applying high pressure, in conjunction with necessarily high temperature, to the materials to be welded; the technique is most commonly used to weld "sandwiches" of alternating layers of thin metal foil, and metal wires or filaments. Currently, the diffusion bonding method is widely used in the joining of high-strength and refractory metals within the aerospace and nuclear industries.

Extrusion welding is one of the processes used to weld thermoplastics and composites, developed in the 1960s as an evolution of hot gas welding. It can be a manual or automated process.

Advanced thermoplastic composites (ACM) have a high strength fibres held together by a thermoplastic matrix. Advanced thermoplastic composites are becoming more widely used in the aerospace, marine, automotive and energy industry. This is due to the decreasing cost and superior strength to weight ratios, over metallic parts. Advance thermoplastic composite have excellent damage tolerance, corrosion resistant, high fracture toughness, high impact resistance, good fatigue resistance, low storage cost, and infinite shelf life. Thermoplastic composites also have the ability to be formed and reformed, repaired and fusion welded.

IR welding is a welding technique that uses a non-contact heating method to melt and fuse thermoplastic parts together using the energy from infrared radiation. The process was first developed in the late 1900s, but due to the high capital cost of IR equipment the process was not commonly applied in industry until prices dropped in the 1990s. IR welding typically uses a range of wavelengths from 800 to 11,000 nm on the electromagnetic spectrum to heat, melt, and fuse the interface between two plastic parts through the absorption and conversion of the IR energy into heat. Laser welding is a similar joining process that applies IR radiation at a single wavelength.

Implant resistance welding is a method used to join thermoplastics and thermoplastic composites. Resistive heating of a conductive material implanted in the thermoplastic melts the thermoplastic while a pressure is applied in order to fuse two parts together. The process settings such as current and weld time are important, because affect the strength of the joint. The quality of a joint made using implant resistance welding is determined using destructive strength testing of specimens.

Implant induction welding is a joining method used in plastic manufacturing. The welding process uses an induction coil to excite and heat electromagnetically susceptible material at the joint interface and melt the thermoplastic. The susceptible material can be contained in a gasket placed between the welding surface, or within the actual components of a composite material. Its usage is common for large, unusually shaped, or delicate parts that would be difficult to weld through other methods.

References

  1. 1 2 3 4 5 6 7 8 Handbook of Plastics Joining: A Practical Guide. Troughton, Michael John (2nd ed.). Norwich, NY: William Andrew. 2008. ISBN   9780815515814. OCLC   302420421.CS1 maint: others (link)
  2. 1 2 3 4 5 6 7 Balkan, Onur; Demirer, Halil; Ezdeşir, Ayhan; Yıldırım, Hüseyin (2008-04-01). "Effects of welding procedures on mechanical and morphological properties of hot gas butt welded PE, PP, and PVC sheets". Polymer Engineering & Science. 48 (4): 732–746. doi:10.1002/pen.21014. ISSN   1548-2634.
  3. 1 2 3 Marczis, B.; Czigany, T. (2006). "Interrelationships between welding parameters of hot-gas welded polypropylene". Polymer Engineering & Science. 46 (9): 1173–1181. doi:10.1002/pen.20570.