Huisken's monotonicity formula

Last updated

In differential geometry, Huisken's monotonicity formula states that, if an n-dimensional surface in (n + 1)-dimensional Euclidean space undergoes the mean curvature flow, then its convolution with an appropriately scaled and time-reversed heat kernel is non-increasing. [1] [2] The result is named after Gerhard Huisken, who published it in 1990. [3]

Specifically, the (n + 1)-dimensional time-reversed heat kernel converging to a point x0 at time t0 may be given by the formula [1]

Then Huisken's monotonicity formula gives an explicit expression for the derivative of

where μ is the area element of the evolving surface at time t. The expression involves the negation of another integral, whose integrand is non-negative, so the derivative is non-positive.

Typically, x0 and t0 are chosen as the time and position of a singularity of the evolving surface, and the monotonicity formula can be used to analyze the behavior of the surface as it evolves towards this singularity. In particular, the only surfaces for which the convolution with the heat kernel remains constant rather than decreasing are ones that stay self-similar as they evolve, and the monotonicity formula can be used to classify these surfaces.

Grigori Perelman derived analogous formulas for the Ricci flow. [4] [5]

Related Research Articles

In the mathematical field of geometric topology, the Poincaré conjecture is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.

In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries . In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by William Thurston (1982), and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture.

<span class="mw-page-title-main">Grigori Perelman</span> Russian mathematician (born 1966)

Grigori Yakovlevich Perelman is a Russian mathematician who is known for his contributions to the fields of geometric analysis, Riemannian geometry, and geometric topology. In 2005, Perelman abruptly quit his research job at the Steklov Institute of Mathematics, and in 2006 stated that he had quit professional mathematics, due to feeling disappointed over the ethical standards in the field. He lives in seclusion in Saint Petersburg, and has not accepted offers for interviews since 2006.

<span class="mw-page-title-main">Ricci flow</span> Partial differential equation

In the mathematical fields of differential geometry and geometric analysis, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.

<span class="mw-page-title-main">Shing-Tung Yau</span> Chinese mathematician

Shing-Tung Yau is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University.

<span class="mw-page-title-main">Luigi Bianchi</span> Italian mathematician

Luigi Bianchi was an Italian mathematician. He was born in Parma, Emilia-Romagna, and died in Pisa. He was a leading member of the vigorous geometric school which flourished in Italy during the later years of the 19th century and the early years of the twentieth century.

<span class="mw-page-title-main">Richard S. Hamilton</span> American mathematician (born 1943)

Richard Streit Hamilton is an American mathematician who serves as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilton is best known for foundational contributions to the theory of the Ricci flow and the development of a corresponding program of techniques and ideas for resolving the Poincaré conjecture and geometrization conjecture in the field of geometric topology. Grigori Perelman built upon Hamilton's results to prove the conjectures, and was awarded a Millennium Prize for his work. However, Perelman declined the award, regarding Hamilton's contribution as being equal to his own.

<span class="mw-page-title-main">Richard Schoen</span> American mathematician

Richard Melvin Schoen is an American mathematician known for his work in differential geometry and geometric analysis. He is best known for the resolution of the Yamabe problem in 1984.

<span class="mw-page-title-main">Tian Gang</span> Chinese mathematician (born 1958)

Tian Gang is a Chinese mathematician. He is a professor of mathematics at Peking University and Higgins Professor Emeritus at Princeton University. He is known for contributions to the mathematical fields of Kähler geometry, Gromov-Witten theory, and geometric analysis.

In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold. Intuitively, a family of surfaces evolves under mean curvature flow if the normal component of the velocity of which a point on the surface moves is given by the mean curvature of the surface. For example, a round sphere evolves under mean curvature flow by shrinking inward uniformly. Except in special cases, the mean curvature flow develops singularities.

In the mathematical fields of differential geometry and geometric analysis, inverse mean curvature flow (IMCF) is a geometric flow of submanifolds of a Riemannian or pseudo-Riemannian manifold. It has been used to prove a certain case of the Riemannian Penrose inequality, which is of interest in general relativity.

<span class="mw-page-title-main">Leon Simon</span> Australian mathematician (born 1945)

Leon Melvyn Simon, born in 1945, is a Leroy P. Steele Prize and Bôcher Prize-winning mathematician, known for deep contributions to the fields of geometric analysis, geometric measure theory, and partial differential equations. He is currently Professor Emeritus in the Mathematics Department at Stanford University.

<span class="mw-page-title-main">John Lott (mathematician)</span> American mathematician

John William Lott is a professor of Mathematics at the University of California, Berkeley. He is known for contributions to differential geometry.

<span class="mw-page-title-main">Simon Brendle</span> German mathematician

Simon Brendle is a German mathematician working in differential geometry and nonlinear partial differential equations. He received his Dr. rer. nat. from Tübingen University under the supervision of Gerhard Huisken (2001). He was a professor at Stanford University (2005–2016), and is currently a professor at Columbia University. He has held visiting positions at MIT, ETH Zürich, Princeton University, and Cambridge University.

<span class="mw-page-title-main">Gerhard Huisken</span> German mathematician

Gerhard Huisken is a German mathematician whose research concerns differential geometry and partial differential equations. He is known for foundational contributions to the theory of the mean curvature flow, including Huisken's monotonicity formula, which is named after him. With Tom Ilmanen, he proved a version of the Riemannian Penrose inequality, which is a special case of the more general Penrose conjecture in general relativity.

<span class="mw-page-title-main">Curve-shortening flow</span> Motion of a curve based on its curvature

In mathematics, the curve-shortening flow is a process that modifies a smooth curve in the Euclidean plane by moving its points perpendicularly to the curve at a speed proportional to the curvature. The curve-shortening flow is an example of a geometric flow, and is the one-dimensional case of the mean curvature flow. Other names for the same process include the Euclidean shortening flow, geometric heat flow, and arc length evolution.

In mathematics, the Almgren–Pitts min-max theory is an analogue of Morse theory for hypersurfaces.

In mathematics, an ancient solution to a differential equation is a solution that can be extrapolated backwards to all past times, without singularities. That is, it is a solution "that is defined on a time interval of the form (−∞, T)."

In differential geometry, the Angenent torus is a smooth embedding of the torus into three-dimensional Euclidean space, with the property that it remains self-similar as it evolves under the mean curvature flow. Its existence shows that, unlike the one-dimensional curve-shortening flow, the two-dimensional mean-curvature flow has embedded surfaces that form more complex singularities as they collapse.

<i>Extrinsic Geometric Flows</i> Geometry textbook

Extrinsic Geometric Flows is an advanced mathematics textbook that overviews geometric flows, mathematical problems in which a curve or surface moves continuously according to some rule. It focuses on extrinsic flows, in which the rule depends on the embedding of a surface into space, rather than intrinsic flows such as the Ricci flow that depend on the internal geometry of the surface and can be defined without respect to an embedding.

References

  1. 1 2 Mantegazza, Carlo (2011), "3.1 The Monotonicity Formula for Mean Curvature Flow", Lecture notes on mean curvature flow, Progress in Mathematics, vol. 290, Basel: Birkhäuser/Springer, pp. 49–52, CiteSeerX   10.1.1.205.9269 , doi:10.1007/978-3-0348-0145-4, ISBN   978-3-0348-0144-7, MR   2815949 .
  2. Bellettini, Giovanni (2013), "4 Huisken's monotonicity formula", Lecture notes on mean curvature flow, barriers and singular perturbations, Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol. 12, Pisa: Edizioni della Normale, pp. 59–68, doi:10.1007/978-88-7642-429-8, ISBN   978-88-7642-428-1, MR   3155251 .
  3. Huisken, Gerhard (1990), "Asymptotic behavior for singularities of the mean curvature flow", Journal of Differential Geometry, 31 (1): 285–299, doi: 10.4310/jdg/1214444099 , hdl: 11858/00-001M-0000-0013-5CFE-3 , MR   1030675 .
  4. Perelman, Grigori (2002), The entropy formula for the Ricci flow and its geometric applications, arXiv: math/0211159 , Bibcode:2002math.....11159P .
  5. Cao, Huai-Dong; Hamilton, Richard S.; Ilmanen, Tom (2004), Gaussian densities and stability for some Ricci solitons, arXiv: math/0404165 , Bibcode:2004math......4165C, There are also two monotonicity formulas of shrinking or localizing type ... Either of these can be seen as the analogue of Huisken's monotonicity formula for mean curvature flow..