Hybrid neural network

Last updated

The term hybrid neural network can have two meanings:

  1. Biological neural networks interacting with artificial neuronal models, and
  2. Artificial neural networks with a symbolic part (or, conversely, symbolic computations with a connectionist part).

As for the first meaning, the artificial neurons and synapses in hybrid networks can be digital or analog. For the digital variant voltage clamps are used to monitor the membrane potential of neurons, to computationally simulate artificial neurons and synapses and to stimulate biological neurons by inducing synaptic. For the analog variant, specially designed electronic circuits connect to a network of living neurons through electrodes.

As for the second meaning, incorporating elements of symbolic computation and artificial neural networks into one model was an attempt to combine the advantages of both paradigms while avoiding the shortcomings. Symbolic representations have advantages with respect to explicit, direct control, fast initial coding, dynamic variable binding and knowledge abstraction. Representations of artificial neural networks, on the other hand, show advantages for biological plausibility, learning, robustness (fault-tolerant processing and graceful decay), and generalization to similar input. Since the early 1990s many attempts have been made to reconcile the two approaches.

Related Research Articles

<span class="mw-page-title-main">Cognitive science</span> Interdisciplinary scientific study of cognitive processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes. It examines the nature, the tasks, and the functions of cognition. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

<span class="mw-page-title-main">Connectionism</span> Cognitive science approach

Connectionism is the name of an approach to the study of human mental processes and cognition that utilizes mathematical models known as connectionist networks or artificial neural networks. Connectionism has had many 'waves' since its beginnings.

Computational neuroscience is a branch of neuroscience which employs mathematics, computer science, theoretical analysis and abstractions of the brain to understand the principles that govern the development, structure, physiology and cognitive abilities of the nervous system.

In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems, symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems. The Symbolic AI paradigm led to seminal ideas in search, symbolic programming languages, agents, multi-agent systems, the semantic web, and the strengths and limitations of formal knowledge and reasoning systems.

Neuromorphic computing is an approach to computing that is inspired by the structure and function of the human brain. A neuromorphic computer/chip is any device that uses physical artificial neurons to do computations. In recent times, the term neuromorphic has been used to describe analog, digital, mixed-mode analog/digital VLSI, and software systems that implement models of neural systems. Recent advances have even discovered ways to mimic the human nervous system through liquid solutions of chemical systems.

The language of thought hypothesis (LOTH), sometimes known as thought ordered mental expression (TOME), is a view in linguistics, philosophy of mind and cognitive science, forwarded by American philosopher Jerry Fodor. It describes the nature of thought as possessing "language-like" or compositional structure. On this view, simple concepts combine in systematic ways to build thoughts. In its most basic form, the theory states that thought, like language, has syntax.

<span class="mw-page-title-main">Neural circuit</span> Network or circuit of neurons

A neural circuit is a population of neurons interconnected by synapses to carry out a specific function when activated. Multiple neural circuits interconnect with one another to form large scale brain networks.

<span class="mw-page-title-main">Neural network (biology)</span> Structure in nervous systems

A neural network, also called a neuronal network, is an interconnected population of neurons. Biological neural networks are studied to understand the organization and functioning of nervous systems.

Computational cognition is the study of the computational basis of learning and inference by mathematical modeling, computer simulation, and behavioral experiments. In psychology, it is an approach which develops computational models based on experimental results. It seeks to understand the basis behind the human method of processing of information. Early on computational cognitive scientists sought to bring back and create a scientific form of Brentano's psychology.

Neurophilosophy or the philosophy of neuroscience is the interdisciplinary study of neuroscience and philosophy that explores the relevance of neuroscientific studies to the arguments traditionally categorized as philosophy of mind. The philosophy of neuroscience attempts to clarify neuroscientific methods and results using the conceptual rigor and methods of philosophy of science.

<span class="mw-page-title-main">Neuro-fuzzy</span>

In the field of artificial intelligence, the designation neuro-fuzzy refers to combinations of artificial neural networks and fuzzy logic.

Neural computation is the information processing performed by networks of neurons. Neural computation is affiliated with the philosophical tradition known as Computational theory of mind, also referred to as computationalism, which advances the thesis that neural computation explains cognition. The first persons to propose an account of neural activity as being computational was Warren McCullock and Walter Pitts in their seminal 1943 paper, A Logical Calculus of the Ideas Immanent in Nervous Activity.

For holographic data storage, holographic associative memory (HAM) is an information storage and retrieval system based on the principles of holography. Holograms are made by using two beams of light, called a "reference beam" and an "object beam". They produce a pattern on the film that contains them both. Afterwards, by reproducing the reference beam, the hologram recreates a visual image of the original object. In theory, one could use the object beam to do the same thing: reproduce the original reference beam. In HAM, the pieces of information act like the two beams. Each can be used to retrieve the other from the pattern. It can be thought of as an artificial neural network which mimics the way the brain uses information. The information is presented in abstract form by a complex vector which may be expressed directly by a waveform possessing frequency and magnitude. This waveform is analogous to electrochemical impulses believed to transmit information between biological neuron cells.

Computational neurogenetic modeling (CNGM) is concerned with the study and development of dynamic neuronal models for modeling brain functions with respect to genes and dynamic interactions between genes. These include neural network models and their integration with gene network models. This area brings together knowledge from various scientific disciplines, such as computer and information science, neuroscience and cognitive science, genetics and molecular biology, as well as engineering.

<span class="mw-page-title-main">Spiking neural network</span> Artificial neural network that mimics neurons

Spiking neural networks (SNNs) are artificial neural networks (ANN) that more closely mimic natural neural networks. In addition to neuronal and synaptic state, SNNs incorporate the concept of time into their operating model. The idea is that neurons in the SNN do not transmit information at each propagation cycle, but rather transmit information only when a membrane potential—an intrinsic quality of the neuron related to its membrane electrical charge—reaches a specific value, called the threshold. When the membrane potential reaches the threshold, the neuron fires, and generates a signal that travels to other neurons which, in turn, increase or decrease their potentials in response to this signal. A neuron model that fires at the moment of threshold crossing is also called a spiking neuron model.

Hierarchical temporal memory (HTM) is a biologically constrained machine intelligence technology developed by Numenta. Originally described in the 2004 book On Intelligence by Jeff Hawkins with Sandra Blakeslee, HTM is primarily used today for anomaly detection in streaming data. The technology is based on neuroscience and the physiology and interaction of pyramidal neurons in the neocortex of the mammalian brain.

<span class="mw-page-title-main">Misha Mahowald</span> American computational neuroscientist

Michelle Anne Mahowald was an American computational neuroscientist in the emerging field of neuromorphic engineering. In 1996 she was inducted into the Women in Technology International Hall of Fame for her development of the Silicon Eye and other computational systems. She died by suicide at age 33.

Ron Sun is a cognitive scientist who has made significant contributions to computational psychology and other areas of cognitive science and artificial intelligence. He is currently professor of cognitive sciences at Rensselaer Polytechnic Institute, and formerly the James C. Dowell Professor of Engineering and Professor of Computer Science at University of Missouri. He received his Ph.D. in 1992 from Brandeis University.

The network of the human nervous system is composed of nodes that are connected by links. The connectivity may be viewed anatomically, functionally, or electrophysiologically. These are presented in several Wikipedia articles that include Connectionism, Biological neural network, Artificial neural network, Computational neuroscience, as well as in several books by Ascoli, G. A. (2002), Sterratt, D., Graham, B., Gillies, A., & Willshaw, D. (2011), Gerstner, W., & Kistler, W. (2002), and David Rumelhart, McClelland, J. L., and PDP Research Group (1986) among others. The focus of this article is a comprehensive view of modeling a neural network. Once an approach based on the perspective and connectivity is chosen, the models are developed at microscopic, mesoscopic, or macroscopic (system) levels. Computational modeling refers to models that are developed using computing tools.

Kwabena Adu Boahen is a Ghanaian-born Professor of Bioengineering and Electrical Engineering at Stanford University. He previously taught at the University of Pennsylvania.

References

See also