Within physics, the Hybrid Theory for photon transport in tissue uses the advantages and eliminates the deficiencies of both the Monte Carlo method and the diffusion theory for photon transport to model photons traveling through tissue both accurately and efficiently.
The MCML is a numerical way to simulate photon transport in biological tissue. Each photon packet follows a random walk with persistence, where the direction of each step dependent on the direction of the previous step. By averaging multiple independent random walks, MCML estimates the ensemble-averaged quantities such as reflectance, transmittance, absorption, and fluence.
Briefly, a packet of photon is first launched into the biological tissue. The parameters of photon transport, including the step size and deflection angle due to scattering, are determined by random sampling from probability distributions. A fraction of weight, determined by the scattering and absorption coefficients is deposited at the interaction site. The photon packet continues propagating until the weight left is smaller than a certain threshold. If this packet of photon hits the boundary during the propagation, it is either reflected or transmitted, determined by a pseudorandom number. Statistically sufficient numbers of photon packets must be simulated to obtain the expected values accurately. [1]
Advantages and Disadvantages
This Monte Carlo method is rigorous and flexible. However, because of its statistical nature, this method requires tracking a large number of photon packets, making it computationally expensive.
The Diffusion Theory is an approximation of the radiative transfer equation (RTE), and an analytical way to simulate photon transport. As such, it has the ability to model photon propagation through tissue quickly.
As an example, one way to attain a solution for a pencil beam that is vertically incident on a semi-infinite homogeneous scattering medium is by taking three approximation steps as follows:
Advantages and Disadvantages
Diffusion Theory is more computationally efficient than MCML. However, it is also less accurate than MCML near the source and boundaries.
The Hybrid Theory combines the Diffusion Theory and the Monte Carlo method in order to increase accuracy near the source and boundaries while reducing computation time. In the previous example for the Diffusion Theory, a semi-infinite scattering medium with only one boundary was assumed. If the geometry is a slab, the second boundary must be taken into account. The fluence rate at the extrapolated boundaries must be approximately 0. Using an array of image sources fulfills this boundary condition. The extrapolated boundary is located at distance . The coordinates for the source pairs are where is the coordinate for the point source and is the slab thickness. Only 2-3 pairs are usually necessary to achieve good accuracy.
A Monte Carlo approach can be used to make up for the Diffusion Theory's inherently poor accuracy near the boundaries. As mentioned before, the Monte Carlo simulation is time consuming. When a photon packet is within a critical depth the Monte Carlo simulation tracks all packets but within the center region the photon packet is transformed to an isotropic source and subsequently treated with Diffusion Theory. Just like in the Monte Carlo simulation, any photon packet that gets reemitted is added to the diffuse reflectance .
When a photon packet is scattered into the center zone , it is conditionally converted to an isotropic point source. The photon packet must still be in the center region after one transport mean free path along the direction of the photon packet propagation for it to be converted to a point source, otherwise the Monte Carlo simulation continues. Before the conversion to an isotropic point source, the photon packet reduces its weight due to its interaction with the scattering medium. The resulting weight is recorded as a source function . This is the accumulated weight distribution which can be converted to relative source density function by:
The additional diffuse reflectance from the sources is calculated as:
A trade-off between simulation speed and accuracy exists; choosing a critical depth becomes the deciding factor for simulation speed with a deeper critical depth resulting in slower times due to packets needing to be tracked for a longer distance before the transition to diffusion theory. [2]
Advantages
1.37 | 3 | 0.01 | 7537 | 25 | 301 |
1.37 | 3 | 0.1 | 4924 | 25 | 189 |
1.37 | 3 | 1 | 1150 | 25 | 46 |
1.37 | 1 | 0.01 | 2600 | 25 | 104 |
1.37 | 1 | 0.1 | 2286 | 25 | 91 |
1.37 | 1 | 1 | 1051 | 25 | 41 |
1 | 3 | 0.01 | 1529 | 19 | 80 |
1 | 3 | 0.1 | 1645 | 19 | 87 |
1 | 3 | 1 | 547 | 19 | 29 |
1 | 1 | 0.01 | 480 | 19 | 25 |
1 | 1 | 0.1 | 480 | 19 | 25 |
1 | 1 | 1 | 442 | 19 | 23 |
Fick's laws of diffusion describe diffusion and were derived by Adolf Fick in 1855. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.
Fluorescence recovery after photobleaching (FRAP) is a method for determining the kinetics of diffusion through tissue or cells. It is capable of quantifying the two dimensional lateral diffusion of a molecularly thin film containing fluorescently labeled probes, or to examine single cells. This technique is very useful in biological studies of cell membrane diffusion and protein binding. In addition, surface deposition of a fluorescing phospholipid bilayer allows the characterization of hydrophilic surfaces in terms of surface structure and free energy.
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion, resulting from the random movements and collisions of the particles. In mathematics, it is related to Markov processes, such as random walks, and applied in many other fields, such as materials science, information theory, and biophysics. The diffusion equation is a special case of the convection–diffusion equation, when bulk velocity is zero. It is equivalent to the heat equation under some circumstances.
Radar cross-section (RCS), also called radar signature, is a measure of how detectable an object is by radar. A larger RCS indicates that an object is more easily detected.
Neutron transport is the study of the motions and interactions of neutrons with materials. Nuclear scientists and engineers often need to know where neutrons are in an apparatus, what direction they are going, and how quickly they are moving. It is commonly used to determine the behavior of nuclear reactor cores and experimental or industrial neutron beams. Neutron transport is a type of radiative transport.
Radiative transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of radiative transfer have application in a wide variety of subjects including optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the radiative transfer equation (RTE) exist for simple cases but for more realistic media, with complex multiple scattering effects, numerical methods are required. The present article is largely focused on the condition of radiative equilibrium.
Opacity is the measure of impenetrability to electromagnetic or other kinds of radiation, especially visible light. In radiative transfer, it describes the absorption and scattering of radiation in a medium, such as a plasma, dielectric, shielding material, glass, etc. An opaque object is neither transparent nor translucent. When light strikes an interface between two substances, in general some may be reflected, some absorbed, some scattered, and the rest transmitted. Reflection can be diffuse, for example light reflecting off a white wall, or specular, for example light reflecting off a mirror. An opaque substance transmits no light, and therefore reflects, scatters, or absorbs all of it. Both mirrors and carbon black are opaque. Opacity depends on the frequency of the light being considered. For instance, some kinds of glass, while transparent in the visual range, are largely opaque to ultraviolet light. More extreme frequency-dependence is visible in the absorption lines of cold gases. Opacity can be quantified in many ways; for example, see the article mathematical descriptions of opacity.
Radiation trapping, imprisonment of resonance radiation, radiative transfer of spectral lines, line transfer or radiation diffusion is a phenomenon in physics whereby radiation may be "trapped" in a system as it is emitted by one atom and absorbed by another.
Diffuse reflectance spectroscopy, or diffuse reflection spectroscopy, is a subset of absorption spectroscopy. It is sometimes called remission spectroscopy. Remission is the reflection or back-scattering of light by a material, while transmission is the passage of light through a material. The word remission implies a direction of scatter, independent of the scattering process. Remission includes both specular and diffusely back-scattered light. The word reflection often implies a particular physical process, such as specular reflection.
Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs. This is equivalent to modeling photon transport analytically by the radiative transfer equation (RTE), which describes the motion of photons using a differential equation. However, closed-form solutions of the RTE are often not possible; for some geometries, the diffusion approximation can be used to simplify the RTE, although this, in turn, introduces many inaccuracies, especially near sources and boundaries. In contrast, Monte Carlo simulations can be made arbitrarily accurate by increasing the number of photons traced. For example, see the movie, where a Monte Carlo simulation of a pencil beam incident on a semi-infinite medium models both the initial ballistic photon flow and the later diffuse propagation.
Photon transport in biological tissue can be equivalently modeled numerically with Monte Carlo simulations or analytically by the radiative transfer equation (RTE). However, the RTE is difficult to solve without introducing approximations. A common approximation summarized here is the diffusion approximation. Overall, solutions to the diffusion equation for photon transport are more computationally efficient, but less accurate than Monte Carlo simulations.
Photon diffusion equation is a second order partial differential equation describing the time behavior of photon fluence rate distribution in a low-absorption high-scattering medium.
Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, like in spinodal decomposition.
The transport length in a strongly diffusing medium is the length over which the direction of propagation of the photon is randomized. It is related to the mean free path l by the relation:
Ultrasound-modulated optical tomography (UOT) is a form of tomography involving ultrasound. It is used in imaging of biological soft tissues and has potential applications for early cancer detection. Like optical techniques, this method provides high contrast, and the use of ultrasound also provides high resolution.
Photon transport theories in Physics, Medicine, and Statistics, are commonly used to model light propagation in tissue. The responses to a pencil beam incident on a scattering medium are referred to as Green's functions or impulse responses. Photon transport methods can be directly used to compute broad-beam responses by distributing photons over the cross section of the beam. However, convolution can be used in certain cases to improve computational efficiency.
The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics. The scattering events and the duration of particle flight is determined through the use of random numbers.
Biology Monte Carlo methods (BioMOCA) have been developed at the University of Illinois at Urbana-Champaign to simulate ion transport in an electrolyte environment through ion channels or nano-pores embedded in membranes. It is a 3-D particle-based Monte Carlo simulator for analyzing and studying the ion transport problem in ion channel systems or similar nanopores in wet/biological environments. The system simulated consists of a protein forming an ion channel (or an artificial nanopores like a Carbon Nano Tube, CNT), with a membrane (i.e. lipid bilayer) that separates two ion baths on either side. BioMOCA is based on two methodologies, namely the Boltzmann transport Monte Carlo (BTMC) and particle-particle-particle-mesh (P3M). The first one uses Monte Carlo method to solve the Boltzmann equation, while the later splits the electrostatic forces into short-range and long-range components.
Time-domain diffuse optics or time-resolved functional near-infrared spectroscopy is a branch of functional near-Infrared spectroscopy which deals with light propagation in diffusive media. There are three main approaches to diffuse optics namely continuous wave (CW), frequency domain (FD) and time-domain (TD). Biological tissue in the range of red to near-infrared wavelengths are transparent to light and can be used to probe deep layers of the tissue thus enabling various in vivo applications and clinical trials.
The Kubelka-Munk theory, devised by Paul Kubelka and Franz Munk, is a fundamental approach to modeling the appearance of paint films. As published in 1931, the theory addresses "the question of how the color of a substrate is changed by the application of a coat of paint of specified composition and thickness, and especially the thickness of paint needed to obscure the substrate".