Hydrostatic weighing

Last updated

Hydrostatic weighing, also referred to as underwater weighing, hydrostatic body composition analysis and hydrodensitometry, is a technique for measuring the density of a living person's body. It is a direct application of Archimedes' principle, that an object displaces its own volume of water.

Contents

Method

The procedure, pioneered by Behnke, Feen and Welham as means to later quantify the relation between specific gravity and the fat content, [1] is based on Archimedes' principle, which states that: The buoyant force which water exerts on an immersed object is equal to the weight of water that the object displaces.

Example 1: If a block of solid stone weighs 3 kilograms on dry land and 2 kilogram when immersed in a tub of water, then it has displaced 1 kilogram of water. Since 1 liter of water weighs 1 kilogram (at 4 °C), it follows that the volume of the block is 1 liter and the density (mass/volume) of the stone is 3 kilograms/liter.

Example 2: Consider a larger block of the same stone material as in Example 1 but with a 1-liter cavity inside of the same amount of stone. The block would still weigh 3 kilograms on dry land (ignoring the weight of air in the cavity) but it would now displace 2 liters of water so its immersed weight would be only 1 kilogram (at 4 °C).

In either of the examples above, the correct density can be calculated by the following equation: [2]

Where:

The residual volume in the lungs can add error if not measured directly or estimated accurately. Residual volume can be measured by gas dilution procedures or estimated from a person's age and height: [3]

It is worth noting that these estimates are for adults aged 18-70, have standard deviation of about 0.4 litres and have dependence on ethnicity, environmental factors, etc. [4] Residual volume may also be estimated as a proportion of vital capacity (0.24 for men and 0.28 for women). [5]

Application

Once body density has been calculated from the data obtained by hydrostatic/underwater weighing, body composition can be estimated. The most commonly used equations for estimating the percent of body fat from density are those of Siri [6] and Brozek et al.: [7]

Siri (1956): Fat % = [4.950 /Density - 4.500]×100

Brozek et al. (1963): Fat % = [4.570 /Density - 4.142]×100

Related Research Articles

Density is a substance's mass per unit of volume. The symbol most often used for density is ρ, although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume:

<span class="mw-page-title-main">Relative density</span> Ratio of two densities

Relative density, also called specific gravity, is a dimensionless quantity defined as the ratio of the density of a substance to the density of a given reference material. Specific gravity for liquids is nearly always measured with respect to water at its densest ; for gases, the reference is air at room temperature. The term "relative density" is often preferred in scientific usage, whereas the term "specific gravity" is deprecated.

<span class="mw-page-title-main">Buoyancy</span> Upward force that opposes the weight of an object immersed in fluid

Buoyancy, or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pressure at the bottom of a column of fluid is greater than at the top of the column. Similarly, the pressure at the bottom of an object submerged in a fluid is greater than at the top of the object. The pressure difference results in a net upward force on the object. The magnitude of the force is proportional to the pressure difference, and is equivalent to the weight of the fluid that would otherwise occupy the submerged volume of the object, i.e. the displaced fluid.

<span class="mw-page-title-main">Lung volumes</span> Volume of air in the lungs

Lung volumes and lung capacities refer to the volume of air in the lungs at different phases of the respiratory cycle.

Archimedes' principle states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of Syracuse.

<span class="mw-page-title-main">Buoyancy compensator (diving)</span> Equipment for controlling the buoyancy of a diver

A buoyancy compensator (BC), also called a buoyancy control device (BCD), stabilizer, stabilisor, stab jacket, wing or adjustable buoyancy life jacket (ABLJ), depending on design, is a type of diving equipment which is worn by divers to establish neutral buoyancy underwater and positive buoyancy at the surface, when needed.

Diving physics, or the physics of underwater diving is the basic aspects of physics which describe the effects of the underwater environment on the underwater diver and their equipment, and the effects of blending, compressing, and storing breathing gas mixtures, and supplying them for use at ambient pressure. These effects are mostly consequences of immersion in water, the hydrostatic pressure of depth and the effects of pressure and temperature on breathing gases. An understanding of the physics behind is useful when considering the physiological effects of diving, breathing gas planning and management, diver buoyancy control and trim, and the hazards and risks of diving.

<span class="mw-page-title-main">Diving weighting system</span> Ballast carried to counteract buoyancy

A diving weighting system is ballast weight added to a diver or diving equipment to counteract excess buoyancy. They may be used by divers or on equipment such as diving bells, submersibles or camera housings.

<span class="mw-page-title-main">Hydrostatics</span> Branch of fluid mechanics that studies fluids at rest

Fluid statics or hydrostatics is the branch of fluid mechanics that studies fluids at hydrostatic equilibrium and "the pressure in a fluid or exerted by a fluid on an immersed body".

<span class="mw-page-title-main">Submersible</span> Small watercraft able to navigate under water

A submersible is an underwater vehicle which needs to be transported and supported by a larger watercraft or platform. This distinguishes submersibles from submarines, which are self-supporting and capable of prolonged independent operation at sea.

<i>Eureka</i> (word) Exclamation for a discovery or invention

Eureka is an interjection used to celebrate a discovery or invention. It is a transliteration of an exclamation attributed to Ancient Greek mathematician and inventor Archimedes.

The body fat percentage (BFP) of a human or other living being is the total mass of fat divided by total body mass, multiplied by 100; body fat includes essential body fat and storage body fat. Essential body fat is necessary to maintain life and reproductive functions. The percentage of essential body fat for women is greater than that for men, due to the demands of childbearing and other hormonal functions. Storage body fat consists of fat accumulation in adipose tissue, part of which protects internal organs in the chest and abdomen. A number of methods are available for determining body fat percentage, such as measurement with calipers or through the use of bioelectrical impedance analysis.

In physical fitness, body composition refers to quantifying the different components of a human body. The selection of compartments varies by model but may include fat, bone, water, and muscle. Two people of the same gender, height, and body weight may have completely different body types as a consequence of having different body compositions. This may be explained by a person having low or high body fat, dense muscles, or big bones.

<span class="mw-page-title-main">Neutral buoyancy</span> Equilibrium between buoyancy and weight of an immersed object

Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink or rise. An object that has neutral buoyancy will neither sink nor rise.

<span class="mw-page-title-main">Mass versus weight</span> Distinction between mass and weight

In common usage, the mass of an object is often referred to as its weight, though these are in fact different concepts and quantities. Nevertheless, one object will always weigh more than another with less mass if both are subject to the same gravity.

<span class="mw-page-title-main">Albert R. Behnke</span> US Navy physician and diving medicine researcher

Captain Albert Richard Behnke Jr. USN (ret.) was an American physician, who was principally responsible for developing the U.S. Naval Medical Research Institute. Behnke separated the symptoms of Arterial Gas Embolism (AGE) from those of decompression sickness and suggested the use of oxygen in recompression therapy.

<span class="mw-page-title-main">Classification of obesity</span> Overview of the classification of the condition of obesity

Obesity classification is a ranking of obesity, the medical condition in which excess body fat has accumulated to the extent that it has an adverse effect on health. The World Health Organization (WHO) classifies obesity by body mass index (BMI). BMI is further evaluated in terms of fat distribution via the waist–hip ratio and total cardiovascular risk factors. In children, a healthy weight varies with age and sex, and obesity determination is in relation to a historical normal group.

<i>On Floating Bodies</i> Treatise on hydrostatics by Archimedes

On Floating Bodies is a work, originally in two books, by Archimedes, one of the most important mathematicians, physicists, and engineers of antiquity. Thought to have been written towards the end of Archimedes' life, On Floating Bodies I-II survives only partly in Greek and in a medieval Latin translation from the Greek. It is the first known work on hydrostatics, of which Archimedes is recognized as the founder.

<span class="mw-page-title-main">Air displacement plethysmography</span>

Air displacement plethysmography is a recognized and scientifically validated densitometric method to measure human body composition. ADP is based on the same principles as the gold standard method of hydrostatic weighing, but through a densitometric technique that uses air displacement rather than water immersion. Air-displacement plethysmography offers several advantages over established reference methods, including a quick, comfortable, automated, noninvasive, and safe measurement process, and accommodates various subject types.

A variable-buoyancy pressure vessel system is a type of rigid buoyancy control device for diving systems that retains a constant volume and varies its density by changing the weight (mass) of the contents, either by moving the ambient fluid into and out of a rigid pressure vessel, or by moving a stored liquid between internal and external variable-volume containers. A pressure vessel is used to withstand the hydrostatic pressure of the underwater environment. A variable-buoyancy pressure vessel can have an internal pressure greater or less than ambient pressure, and the pressure difference can vary from positive to negative within the operational depth range, or remain either positive or negative throughout the pressure range, depending on design choices.

References

  1. Behnke AR; Feen BG; Welham WC (1942). "The Specific Gravity of Healthy Men". JAMA (Reprinted in Obesity Research). 118 (3): 495–498. doi:10.1002/j.1550-8528.1995.tb00152.x. PMID   7627779.
  2. McArdle, William D; Katch, Frank I; Katch, Victor L (2010). Exercise Physiology: Energy, Nutrition, and Human Performance (7th ed.). Lippincott Williams & Wilkins. p. 741. ISBN   978-0-7817-4990-9.
  3. Quanjer P.H., Ed. (1983). "Standardized Lung Function Testing". Bulletin Européen de Physiopathologie Respiratoire. European Community for Coal and Steel, Luxembourg. 19 (suppl. 5): 1–95.
  4. Ph.H Quanjer; G.J. Tammeling; J.E. Cotes; O.F. Pedersen; R. Peslin; J-C. Yernault (1993). "Lung volumes and forced ventilatory flows". European Respiratory Journal. 6 (suppl. 16): 5–40. doi:10.1183/09041950.005s1693.
  5. Wilmore, J. H. (1969). "The use of actual predicted and constant residual volumes in the assessment of body composition by underwater weighing". Med Sci Sports. 1 (2): 87–90. doi: 10.1249/00005768-196906000-00006 .
  6. Siri, SE (1961), "Body composition from fluid spaces and density: analysis of methods", in Brozek J, Henschel A (eds.), Techniques for measuring body composition, Washington, DC: National Academy of Sciences, National Research Council, pp. 223–34
  7. Brozek J, Grande F, Anderson JT, Keys A (September 1963), "Densitometric Analysis of Body Composition: Revision of some Quantitative Assumptions", Ann. N. Y. Acad. Sci., 110 (1): 113–40, Bibcode:1963NYASA.110..113B, doi:10.1111/j.1749-6632.1963.tb17079.x, PMID   14062375, S2CID   2191337

See also