Hyper-IL-6

Last updated

Hyper-IL-6 is a designer cytokine, which was generated by the German biochemist Stefan Rose-John. [1] Hyper-IL-6 is a fusion protein of the four-helical cytokine Interleukin-6 and the soluble Interleukin-6 receptor which are covalently linked by a flexible peptide linker. [1] Interleukin-6 on target cells binds to a membrane bound Interleukin-6 receptor. [2] The complex of Interleukin-6 and the Interleukin-6 receptor associate with a second receptor protein called gp130, which dimerises and initiates intracellular signal transduction. [3] Gp130 is expressed on all cells of the human body whereas the Interleukin-6 receptor is only found on few cells such as hepatocytes and some leukocytes. [4] Neither Interleukin-6 nor the Interleukin-6 receptor have a measurable affinity for gp130. [5] Therefore, cells, which only express gp130 but no Interleukin-6 receptor are not responsive to Interleukin-6. [5] It was found, however, that the membrane-bound Interleukin-6 receptor can be cleaved from the cell membrane generating a soluble Interleukin-6 receptor. [6] The soluble Interleukin-6 receptor can bind the ligand Interleukin-6 with similar affinity as the membrane-bound Interleukin-6 receptor and the complex of Interleukin-6 and the soluble Interleukin-6 receptor can bind to gp130 on cells, which only express gp130 but no Interleukin-6 receptor. [7] The mode of signaling via the soluble Interleukin-6 receptor has been named Interleukin-6 trans-signaling whereas Interleukin-6 signaling via the membrane-bound Interleukin-6 receptor is referred to as Interleukin-6 classic signaling. [8] Therefore, the generation of the soluble Interleukin-6 receptor enables cells to respond to Interleukin-6, which in the absence of soluble Interleukin-6 receptor would be completely unresponsive to the cytokine. [8]

Contents

Molecular construction of Hyper-IL-6

In order to generate a molecular tool to discriminate between Interleukin-6 classic signaling and Interleukin-6 trans-signaling, a cDNA coding for human Interleukin-6 and a cDNA coding for the human soluble Interleukin-6 receptor were connected by a cDNA coding for a 13 amino acids long linker, which was long enough to bridge the 40 Å distance between the COOH terminus of the soluble Interleukin-6 receptor and the NH2 terminus of human Interleukin-6. [9] The generated cDNA was expressed in yeast cells and in mammalian cells and it was shown that. [10]

Hyper-IL-6.jpg

Use of Hyper-IL-6 to analyse IL-6 signaling

Hyper-IL-6 has been used to test which cells depend on Interleukin-6 trans-signaling in their response to the cytokine Interleukin-6. To this end, cells were treated with Interleukin-6 and alternatively with Hyper-IL-6. Cells, which respond to Interleukin-6 alone do express an Interleukin-6 receptor whereas cells, which only respond to Hyper-IL-6 but not to Interleukin-6 alone depend in their response to the cytokine on Interleukin-6 trans-signaling. [11] It turned out that hematopoietic stem cells, [12] neural cells, [13] smooth muscle cells [14] and endothelial cells [15] are typical target cells of Interleukin-6 trans-signaling.

The concept of Interleukin-6 trans-signaling

The Hyper-IL-6 protein has also been used to explore the physiologic role of Interleukin-6 trans-signaling in vivo. It turned out that this signaling mode was involved in many types of inflammation [16] and cancer. [17]

Hyper-IL-6 has helped to establish the concept of Interleukin-6 trans-signaling. [18] Interleukin-6 trans-signaling mediates the pro-inflammatory activities of Interleukin-6 whereas Interleukin-6 classic signaling governs the protective and regenerative Interleukin-6 activities. [19] Recently, in breast cancer patients, it was shown with the help of Hyper-IL-6 that IL-6 trans-signaling via phosphoinositid-3-kinase signaling activates disseminated cancer cells long before metastases are formed. [20] In addition, it was demonstrated in mice that Hyper-IL-6 transneuronal delivery enabled functional recovery after severe spinal cord injury. [21]

Related Research Articles

Interleukins (ILs) are a group of cytokines that are expressed and secreted by white blood cells (leukocytes) as well as some other body cells. The human genome encodes more than 50 interleukins and related proteins.

<span class="mw-page-title-main">Interleukin 6</span> Cytokine protein

Interleukin 6 (IL-6) is an interleukin that acts as both a pro-inflammatory cytokine and an anti-inflammatory myokine. In humans, it is encoded by the IL6 gene.

<span class="mw-page-title-main">Oncostatin M</span> Mammalian protein found in Homo sapiens

Oncostatin M, also known as OSM, is a protein that in humans is encoded by the OSM gene.

<span class="mw-page-title-main">Interleukin 11</span> Protein-coding gene in the species Homo sapiens

Interleukin 11 is a protein that in humans is encoded by the IL11 gene.

<span class="mw-page-title-main">Interleukin 15</span> Cytokine with structural similarity to Interleukin-2

Interleukin-15 (IL-15) is a protein that in humans is encoded by the IL15 gene. IL-15 is an inflammatory cytokine with structural similarity to Interleukin-2 (IL-2). Like IL-2, IL-15 binds to and signals through a complex composed of IL-2/IL-15 receptor beta chain (CD122) and the common gamma chain. IL-15 is secreted by mononuclear phagocytes following infection by virus(es). This cytokine induces the proliferation of natural killer cells, i.e. cells of the innate immune system whose principal role is to kill virally infected cells.

<span class="mw-page-title-main">Interleukin 31</span>

Interleukin-31 (IL-31) is a protein that in humans is encoded by the IL31 gene that resides on chromosome 12. IL-31 is an inflammatory cytokine that helps trigger cell-mediated immunity against pathogens. It has also been identified as a major player in a number of chronic inflammatory diseases, including atopic dermatitis.

<span class="mw-page-title-main">Interleukin 30</span> Protein-coding gene in the species Homo sapiens

Interleukin 30 (IL-30) forms one chain of the heterodimeric cytokine called interleukin 27 (IL-27), thus it is also called IL27-p28. IL-27 is composed of α chain p28 and β chain Epstain-Barr induce gene-3 (EBI3). The p28 subunit, or IL-30, has an important role as a part of IL-27, but it can be secreted as a separate monomer and has its own functions in the absence of EBI3. The discovery of IL-30 as individual cytokine is relatively new and thus its role in the modulation of the immune response is not fully understood.

<span class="mw-page-title-main">Interleukin 26</span>

Interleukin-26 (IL-26) is a protein that in humans is encoded by the IL26 gene.

<span class="mw-page-title-main">Interleukin 22</span> Protein, encoded in humans by IL22 gene

Interleukin-22 (IL-22) is protein that in humans is encoded by the IL22 gene.

Type I cytokine receptors are transmembrane receptors expressed on the surface of cells that recognize and respond to cytokines with four α-helical strands. These receptors are also known under the name hemopoietin receptors, and share a common amino acid motif (WSXWS) in the extracellular portion adjacent to the cell membrane. Members of the type I cytokine receptor family comprise different chains, some of which are involved in ligand/cytokine interaction and others that are involved in signal transduction.

<span class="mw-page-title-main">Glycoprotein 130</span> Mammalian protein found in Homo sapiens

Glycoprotein 130 is a transmembrane protein which is the founding member of the class of tall cytokine receptors. It forms one subunit of the type I cytokine receptor within the IL-6 receptor family. It is often referred to as the common gp130 subunit, and is important for signal transduction following cytokine engagement. As with other type I cytokine receptors, gp130 possesses a WSXWS amino acid motif that ensures correct protein folding and ligand binding. It interacts with Janus kinases to elicit an intracellular signal following receptor interaction with its ligand. Structurally, gp130 is composed of five fibronectin type-III domains and one immunoglobulin-like C2-type (immunoglobulin-like) domain in its extracellular portion.

<span class="mw-page-title-main">Oncostatin M receptor</span> Protein-coding gene in the species Homo sapiens

Oncostatin-M specific receptor subunit beta also known as the Oncostatin M receptor (OSMR), is one of the receptor proteins for oncostatin M, that in humans is encoded by the OSMR gene.

<span class="mw-page-title-main">Interleukin-6 receptor</span> Protein-coding gene in the species Homo sapiens

Interleukin 6 receptor (IL6R) also known as CD126 is a type I cytokine receptor.

<span class="mw-page-title-main">Interleukin 1 receptor, type II</span> Protein-coding gene in the species Homo sapiens

Interleukin 1 receptor, type II (IL-1R2) also known as CD121b is an interleukin receptor. IL1R2 also denotes its human gene.

<span class="mw-page-title-main">IL17RA</span> Protein-coding gene in the species Homo sapiens

Interleukin 17 receptor A, also known as IL17RA and CDw217, is a human gene.

Interleukin-28 receptor is a type II cytokine receptor found largely in epithelial cells. It binds type 3 interferons, interleukin-28 A, Interleukin-28B, interleukin 29 and interferon lambda 4. It consists of an α chain and shares a common β subunit with the interleukin-10 receptor. Binding to the interleukin-28 receptor, which is restricted to select cell types, is important for fighting infection. Binding of the type 3 interferons to the receptor results in activation of the JAK/STAT signaling pathway.

<span class="mw-page-title-main">IL2RA</span> Mammalian protein found in Homo sapiens

The Interleukin-2 receptor alpha chain is a protein involved in the assembly of the high-affinity Interleukin-2 receptor, consisting of alpha (IL2RA), beta (IL2RB) and the common gamma chain (IL2RG). As the name indicates, this receptor interacts with Interleukin-2, a pleiotropic cytokine which plays an important role in immune homeostasis.

<span class="mw-page-title-main">IL1RL1</span> Protein-coding gene in the species Homo sapiens

Interleukin 1 receptor-like 1, also known as IL1RL1 and ST2, is a protein that in humans is encoded by the IL1RL1 gene.

<span class="mw-page-title-main">IL17RD</span>

Interleukin 17 receptor D is a protein that in humans is encoded by the IL17RD gene.

<span class="mw-page-title-main">Olamkicept</span> Chemical compound

Olamkicept, also known as soluble gp130Fc or sgp130Fc is an immunosuppressive drug candidate, which selectively blocks activities of the cytokine Interleukin-6, which are mediated by the soluble Interleukin-6. Interleukin-6 is a cytokine, which plays a dominant role in the regulation of the immune response and also in autoimmunity. Furthermore, Interleukin-6 has been demonstrated to be involved in the regulation of metabolism and body weight. Interleukin-6 also has many activities on neural cells. The biochemical principle was invented by the German biochemist Stefan Rose-John and it was further developed into a biotech compound by the Conaris Research Institute AG, which gave an exclusive world-wide license to the Swiss-based biopharmaceutical company Ferring Pharmaceuticals. In December 2016, Ferring and the biotech company I-MAB signed a licensing agreement granting I-MAB exclusive rights in Asia to Olamkicept for the treatment of autoimmune disease.

References

  1. 1 2 Fischer, Martina; Goldschmitt, Jutta; Peschel, Christian; Brakenhoff, Just P. G.; Kallen, Karl-Josef; Wollmer, Axel; Grötzinger, Joachim; Rose-John, Stefan (February 1997). "A bioactive designer cytokine for human hematopoietic progenitor cell expansion". Nature Biotechnology. 15 (2): 142–145. doi:10.1038/nbt0297-142. PMID   9035138. S2CID   22721071.
  2. Jones, Simon A.; Jenkins, Brendan J. (25 September 2018). "Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer" (PDF). Nature Reviews Immunology. 18 (12): 773–789. doi:10.1038/s41577-018-0066-7. PMID   30254251. S2CID   52823385.
  3. Schaper, Fred; Rose-John, Stefan (October 2015). "Interleukin-6: Biology, signaling and strategies of blockade". Cytokine & Growth Factor Reviews. 26 (5): 475–487. doi:10.1016/j.cytogfr.2015.07.004. PMID   26189695.
  4. Taga, Tetsuya; Kishimoto, Tadamitsu (April 1997). "Gp130 and the interleukin-6 Family of Cytokines". Annual Review of Immunology. 15 (1): 797–819. doi:10.1146/annurev.immunol.15.1.797. PMID   9143707.
  5. 1 2 Rose-John, Stefan (2012). "IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the Pro-Inflammatory Activities of IL-6". International Journal of Biological Sciences. 8 (9): 1237–1247. doi:10.7150/ijbs.4989. PMC   3491447 . PMID   23136552.
  6. Mülberg, Jürgen; Schooltink, Heidi; Stoyan, Tanja; Günther, Monika; Graeve, Lutz; Buse, Gerhard; Mackiewicz, Andrzej; Heinrich, Peter C.; Rose-John, Stefan (February 1993). "The soluble interleukin-6 receptor is generated by shedding". European Journal of Immunology. 23 (2): 473–480. doi:10.1002/eji.1830230226. PMID   8436181. S2CID   22834660.
  7. Mackiewicz, A.; Schooltink, H.; Heinrich, P. C.; Rose-John, S. (15 September 1992). "Complex of soluble human IL-6-receptor/IL-6 up-regulates expression of acute-phase proteins". The Journal of Immunology. 149 (6): 2021–2027. doi:10.4049/jimmunol.149.6.2021. PMID   1381393.
  8. 1 2 Rose-John, S; Heinrich, P C (1 June 1994). "Soluble receptors for cytokines and growth factors: generation and biological function". Biochemical Journal. 300 (2): 281–290. doi:10.1042/bj3000281. PMC   1138158 . PMID   8002928.
  9. Grotzinger, Joachim; Kurapkat, Günther; Wollmer, Axel; Kalai, Michael; Rose-John, Stefan (January 1997). "The family of the IL-6-Type cytokines: Specificity and promiscuity of the receptor complexes". Proteins: Structure, Function, and Genetics. 27 (1): 96–109. doi:10.1002/(SICI)1097-0134(199701)27:1<96::AID-PROT10>3.0.CO;2-D. PMID   9037715. S2CID   35512559.
  10. Peters, Malte; Müller, Albrecht M.; Rose-John, Stefan (15 November 1998). "Interleukin-6 and Soluble Interleukin-6 Receptor: Direct Stimulation of gp130 and Hematopoiesis". Blood. 92 (10): 3495–3504. doi:10.1182/blood.V92.10.3495. PMID   9808540.
  11. Wolf, Janina; Rose-John, Stefan; Garbers, Christoph (November 2014). "Interleukin-6 and its receptors: A highly regulated and dynamic system". Cytokine. 70 (1): 11–20. doi:10.1016/j.cyto.2014.05.024. PMID   24986424.
  12. Audet, Julie; Miller, Cindy L.; Rose-John, Stefan; Piret, James M.; Eaves, Connie J. (13 February 2001). "Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells". Proceedings of the National Academy of Sciences of the United States of America. 98 (4): 1757–1762. Bibcode:2001PNAS...98.1757A. doi: 10.1073/pnas.98.4.1757 . JSTOR   3054949. PMC   29330 . PMID   11172024.
  13. März, Pia; Cheng, Jr-Gang; Gadient, Reto A.; Patterson, Paul H.; Stoyan, Tanja; Otten, Uwe; Rose-John, Stefan (17 March 1998). "Sympathetic neurons can produce and respond to interleukin 6". Proceedings of the National Academy of Sciences of the United States of America. 95 (6): 3251–3256. Bibcode:1998PNAS...95.3251M. doi: 10.1073/pnas.95.6.3251 . JSTOR   44831. PMC   19728 . PMID   9501249.
  14. Klouche, Mariam; Bhakdi, Sucharit; Hemmes, Monika; Rose-John, Stefan (15 October 1999). "Novel Path to Activation of Vascular Smooth Muscle Cells: Up-Regulation of gp130 Creates an Autocrine Activation Loop by IL-6 and Its Soluble Receptor". The Journal of Immunology. 163 (8): 4583–4589. doi:10.4049/jimmunol.163.8.4583. PMID   10510402.
  15. Romano, Maria; Sironi, Marina; Toniatti, Carlo; Polentarutti, Nadia; Fruscella, Paolo; Ghezzi, Pietro; Faggioni, Raffaella; Luini, Walter; van Hinsbergh, Victor; Sozzani, Silvano; Bussolino, Federico; Poli, Valeria; Ciliberto, Gennaro; Mantovani, Alberto (March 1997). "Role of IL-6 and Its Soluble Receptor in Induction of Chemokines and Leukocyte Recruitment". Immunity. 6 (3): 315–325. doi: 10.1016/s1074-7613(00)80334-9 . PMID   9075932.
  16. Calabrese, Leonard H.; Rose-John, Stefan (19 August 2014). "IL-6 biology: implications for clinical targeting in rheumatic disease". Nature Reviews Rheumatology. 10 (12): 720–727. doi: 10.1038/nrrheum.2014.127 . PMID   25136784. S2CID   31635688.
  17. Schmidt, Stefanie; Schumacher, Neele; Schwarz, Jeanette; Tangermann, Simone; Kenner, Lukas; Schlederer, Michaela; Sibilia, Maria; Linder, Markus; Altendorf-Hofmann, Annelore; Knösel, Thomas; Gruber, Elisabeth S.; Oberhuber, Georg; Bolik, Julia; Rehman, Ateequr; Sinha, Anupam; Lokau, Juliane; Arnold, Philipp; Cabron, Anne-Sophie; Zunke, Friederike; Becker-Pauly, Christoph; Preaudet, Adele; Nguyen, Paul; Huynh, Jennifer; Afshar-Sterle, Shoukat; Chand, Ashwini L.; Westermann, Jürgen; Dempsey, Peter J.; Garbers, Christoph; Schmidt-Arras, Dirk; Rosenstiel, Philip; Putoczki, Tracy; Ernst, Matthias; Rose-John, Stefan (2 April 2018). "ADAM17 is required for EGF-R–induced intestinal tumors via IL-6 trans-signaling". Journal of Experimental Medicine. 215 (4): 1205–1225. doi:10.1084/jem.20171696. PMC   5881468 . PMID   29472497.
  18. Rose-John, Stefan; Winthrop, Kevin; Calabrese, Leonard (15 June 2017). "The role of IL-6 in host defence against infections: immunobiology and clinical implications". Nature Reviews Rheumatology. 13 (7): 399–409. doi:10.1038/nrrheum.2017.83. PMID   28615731. S2CID   205519501.
  19. Garbers, Christoph; Heink, Sylvia; Korn, Thomas; Rose-John, Stefan (4 May 2018). "Interleukin-6: designing specific therapeutics for a complex cytokine". Nature Reviews Drug Discovery. 17 (6): 395–412. doi:10.1038/nrd.2018.45. PMID   29725131. S2CID   19238101.
  20. Werner-Klein M, Grujovic A, Irlbeck C, Obradović M, Hoffmann M, Koerkel-Qu H, Lu X, Treitschke S, Köstler C, Botteron C, Weidele K, Werno C, Polzer B, Kirsch S, Gužvić M, Warfsmann J, Honarnejad K, Czyz Z, Feliciello G, Blochberger I, Grunewald S, Schneider E, Haunschild G, Patwary N, Guetter S, Huber S, Rack B, Harbeck N, Buchholz S, Rümmele P, Heine N, Rose-John S, Klein CA (2020) Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nat Commun 11(1):4977
  21. Leibinger M, Zeitler C, Gobrecht P, Anastasia Andreadaki A, Gisselmann G, Fischer D (2021) Transneuronal delivery of hyper-interleukin-6 enables functional recovery after severe spinal cord injury in mice. Nat Commun 12(1):391