Produced | From 1993 to 1996 |
---|---|
Designed by | Ross Technology |
Max. CPU clock rate | 40 MHz to 200 MHz |
Instruction set | SPARC V8 |
Cores | 1 |
The hyperSPARC, code-named "Pinnacle", is a microprocessor that implements the SPARC Version 8 instruction set architecture (ISA) developed by Ross Technology for Cypress Semiconductor.
A microprocessor is a computer processor that incorporates the functions of a central processing unit on a single integrated circuit (IC), or at most a few integrated circuits. The microprocessor is a multipurpose, clock driven, register based, digital integrated circuit that accepts binary data as input, processes it according to instructions stored in its memory, and provides results as output. Microprocessors contain both combinational logic and sequential digital logic. Microprocessors operate on numbers and symbols represented in the binary number system.
SPARC is a reduced instruction set computing (RISC) instruction set architecture (ISA) originally developed by Sun Microsystems. Its design was strongly influenced by the experimental Berkeley RISC system developed in the early 1980s. First released in 1987, SPARC was one of the most successful early commercial RISC systems, and its success led to the introduction of similar RISC designs from a number of vendors through the 1980s and 90s.
An instruction set architecture (ISA) is an abstract model of a computer. It is also referred to as architecture or computer architecture. A realization of an ISA is called an implementation. An ISA permits multiple implementations that may vary in performance, physical size, and monetary cost ; because the ISA serves as the interface between software and hardware. Software that has been written for an ISA can run on different implementations of the same ISA. This has enabled binary compatibility between different generations of computers to be easily achieved, and the development of computer families. Both of these developments have helped to lower the cost of computers and to increase their applicability. For these reasons, the ISA is one of the most important abstractions in computing today.
The hyperSPARC was introduced in 1993, and competed with the Sun Microsystems SuperSPARC. Raju Vegesna was the microarchitect. The hyperSPARC was Sun Microsystem's primary competitor in the mid-1990s. When Fujitsu acquired Ross from Cypress, the hyperSPARC was considered to be more important by its new owner than the SPARC64 developed by HAL Computer Systems, also a Fujitsu subsidiary, a view which was shared with analysts.
Sun Microsystems, Inc. was an American company that sold computers, computer components, software, and information technology services and created the Java programming language, the Solaris operating system, ZFS, the Network File System (NFS), and SPARC. Sun contributed significantly to the evolution of several key computing technologies, among them Unix, RISC processors, thin client computing, and virtualized computing. Sun was founded on February 24, 1982. At its height, the Sun headquarters were in Santa Clara, California, on the former west campus of the Agnews Developmental Center.
The SuperSPARC is a microprocessor that implements the SPARC V8 instruction set architecture (ISA) developed by Sun Microsystems. 33 and 40 MHz versions were introduced in 1992. The SuperSPARC contained 3.1 million transistors. It was fabricated by Texas Instruments (TI) at Miho, Japan in a 0.8 micrometre triple-metal BiCMOS process.
SPARC64 is a microprocessor developed by HAL Computer Systems and fabricated by Fujitsu. It implements the SPARC V9 instruction set architecture (ISA), the first microprocessor to do so. SPARC64 was HAL's first microprocessor and was the first in the SPARC64 brand. It operates at 101 and 118 MHz. The SPARC64 was used exclusively by Fujitsu in their systems; the first systems, the Fujitsu HALstation Model 330 and Model 350 workstations, were formally announced in September 1995 and were introduced in October 1995, two years late. It was succeeded by the SPARC64 II in 1996.
The hyperSPARC was a two-way superscalar microprocessor. It had four execution units: an integer unit, a floating-point unit, a load/store unit and a branch unit. The hyperSPARC has an on-die 8 KB instruction cache, from which two instructions were fetched per cycle and decoded. The decoder could not decode new instructions if the previously decoded instructions were not issued to the execution units.
The integer register file contained 136 registers, providing eight register windows, a feature defined in the SPARC ISA. It had two read ports. The integer unit had a four-stage pipeline, of which two stages were added so the pipeline would be equal to all non-floating-point pipelines. Integer multiply and divide, instructions added in the V8 version of the SPARC architecture, had an 18- and 37-cycle latency, respectively, and stalled the pipeline until they were completed.
A register file is an array of processor registers in a central processing unit (CPU). Modern integrated circuit-based register files are usually implemented by way of fast static RAMs with multiple ports. Such RAMs are distinguished by having dedicated read and write ports, whereas ordinary multiported SRAMs will usually read and write through the same ports.
In computer engineering, register windows are a feature in some instruction set architectures to improve the performance of procedure calls, a very common operation. Register windows were one of the main features of the Berkeley RISC design, which would later be commercialized as the AMD Am29000, Intel i960, Sun Microsystems SPARC, and Intel Itanium.
The microprocessor supported multiprocessing on MBus systems.
Multiprocessing is the use of two or more central processing units (CPUs) within a single computer system. The term also refers to the ability of a system to support more than one processor or the ability to allocate tasks between them. There are many variations on this basic theme, and the definition of multiprocessing can vary with context, mostly as a function of how CPUs are defined.
MBus is a computer bus designed and implemented by Sun Microsystems for communication between high speed computer system components, such as the central processing unit, motherboard and main memory. Contrast this with SBus, used in the same machines to connect add-on cards to the motherboard.
The hyperSPARC consists of 1.2 million transistors. It was fabricated by Cypress in their 0.65 µm, two-layer metal, complementary metal–oxide–semiconductor (CMOS) process. Later iterations of the hyperSPARC have more transistors due to new features, and were ported to newer processes. They were fabricated by Fujitsu, except for the last iteration, which was fabricated by NEC.
Fujitsu Ltd. is a Japanese multinational information technology equipment and services company headquartered in Tokyo, Japan. In 2015, it was the world's fourth-largest IT services provider measured by IT services revenue. Fortune named Fujitsu as one of the world's most admired companies and a Global 500 company.
NEC Corporation is a Japanese multinational provider of information technology (IT) services and products, headquartered in Minato, Tokyo, Japan. It provides IT and network solutions to business enterprises, communications services providers and to government agencies, and has also been the biggest PC vendor in Japan since the 1980s. The company was known as the Nippon Electric Company, Limited, before rebranding in 1983 as NEC.
The hyperSPARC was a multi-chip design. It was packaged in a ceramic multi-chip module (MCM) with a pin grid array (PGA).
The hyperSPARC used the Cypress SparcSet chipset which was introduced in late July 1992. It was developed by Santa Clara, California start-up Nimbus Technologies, Inc. for Cypress, who fabricated the design. SparcSet was also compatible with other SPARC microprocessors.
A central processing unit (CPU), also called a central processor or main processor, is the electronic circuitry within a computer that carries out the instructions of a computer program by performing the basic arithmetic, logic, controlling, and input/output (I/O) operations specified by the instructions. The computer industry has used the term "central processing unit" at least since the early 1960s. Traditionally, the term "CPU" refers to a processor, more specifically to its processing unit and control unit (CU), distinguishing these core elements of a computer from external components such as main memory and I/O circuitry.
The first Pentium microprocessor was introduced by Intel on March 22, 1993. Dubbed P5, its microarchitecture was the fifth generation for Intel, and the first superscalar IA-32 microarchitecture. As a direct extension of the 80486 architecture, it included dual integer pipelines, a faster floating-point unit, wider data bus, separate code and data caches and features for further reduced address calculation latency. In 1996, the Pentium with MMX Technology was introduced with the same basic microarchitecture complemented with an MMX instruction set, larger caches, and some other enhancements.
The UltraSPARC is a microprocessor developed by Sun Microsystems and fabricated by Texas Instruments, introduced in mid-1995. It is the first microprocessor from Sun to implement the 64-bit SPARC V9 instruction set architecture (ISA). Marc Tremblay was a co-microarchitect.
The POWER5 is a microprocessor developed and fabricated by IBM. It is an improved version of the POWER4. The principal improvements are support for simultaneous multithreading (SMT) and an on-die memory controller. The POWER5 is a dual-core microprocessor, with each core supporting one physical thread and two logical threads, for a total of two physical threads and four logical threads.
Sun Microsystems' UltraSPARC T1 microprocessor, known until its 14 November 2005 announcement by its development codename "Niagara", is a multithreading, multicore CPU. Designed to lower the energy consumption of server computers, the CPU typically uses 72 W of power at 1.4 GHz.
The POWER3 is a microprocessor, designed and exclusively manufactured by IBM, that implemented the 64-bit version of the PowerPC instruction set architecture (ISA), including all of the optional instructions of the ISA such as instructions present in the POWER2 version of the POWER ISA but not in the PowerPC ISA. It was introduced on 5 October 1998, debuting in the RS/6000 43P Model 260, a high-end graphics workstation. The POWER3 was originally supposed to be called the PowerPC 630 but was renamed, probably to differentiate the server-oriented POWER processors it replaced from the more consumer-oriented 32-bit PowerPCs. The POWER3 was the successor of the P2SC derivative of the POWER2 and completed IBM's long-delayed transition from POWER to PowerPC, which was originally scheduled to conclude in 1995. The POWER3 was used in IBM RS/6000 servers and workstations at 200 MHz. It competed with the Digital Equipment Corporation (DEC) Alpha 21264 and the Hewlett-Packard (HP) PA-8500.
The R4000 is a microprocessor developed by MIPS Computer Systems that implements the MIPS III instruction set architecture (ISA). Officially announced on 1 October 1991, it was one of the first 64-bit microprocessors and the first MIPS III implementation. In the early 1990s, when RISC microprocessors were expected to replace CISC microprocessors such as the Intel i486, the R4000 was selected to be the microprocessor of the Advanced Computing Environment (ACE), an industry standard that intended to define a common RISC platform. ACE ultimately failed for a number of reasons, but the R4000 found success in the workstation and server markets.
The UltraSPARC IVJaguar and follow-up UltraSPARC IV+Panther are microprocessors designed by Sun Microsystems and manufactured by Texas Instruments. They are the fourth generation of UltraSPARC microprocessors, and implement the 64-bit SPARC V9 instruction set architecture (ISA). The UltraSPARC IV was originally to be succeeded by the UltraSPARC V Millennium, which was canceled after the announcement of the Niagara, now UltraSPARC T1 microprocessor in early 2004. It was instead succeeded by the Fujitsu-designed SPARC64 VI.
Sun Microsystems' UltraSPARC T2 microprocessor is a multithreading, multi-core CPU. It is a member of the SPARC family, and the successor to the UltraSPARC T1. The chip is sometimes referred to by its codename, Niagara 2. Sun started selling servers with the T2 processor in October 2007.
Ross Technology, Inc. was a semiconductor design and manufacturing company, specializing in SPARC microprocessors. It was founded in Austin, Texas in August 1988 by Dr. Roger D. Ross, a leading computer scientist who headed Motorola's Advanced Microprocessor Division and directed the developments of Motorola's MC68030 and RISC-based 88000 microprocessor families.
The SPARC64 V (Zeus) is a SPARC V9 microprocessor designed by Fujitsu. The SPARC64 V was the basis for a series of successive processors designed for servers, and later, supercomputers.
The UltraSPARC III, code-named "Cheetah", is a microprocessor that implements the SPARC V9 instruction set architecture (ISA) developed by Sun Microsystems and fabricated by Texas Instruments. It was introduced in 2001 and operates at 600 to 900 MHz. It was succeeded by the UltraSPARC IV in 2004. Gary Lauterbach was the chief architect.
The UltraSPARC II, code-named "Blackbird", is a microprocessor implementation of the SPARC V9 instruction set architecture (ISA) developed by Sun Microsystems. Marc Tremblay was the chief architect. Introduced in 1997, it was further development of the UltraSPARC operating at higher clock frequencies of 250 MHz, eventually reaching 650 MHz.
The R2000 is a 32-bit microprocessor chip set developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in January 1986, it was the first commercial implementation of the MIPS architecture and the first commercial RISC processor available to all companies. The R2000 competed with Digital Equipment Corporation (DEC) VAX minicomputers and with Motorola 68000 and Intel Corporation 80386 microprocessors. R2000 users included Ardent Computer, DEC, Silicon Graphics, Northern Telecom and MIPS's own Unix workstations.
The TurboSPARC is a microprocessor that implements the SPARC V8 instruction set architecture (ISA) developed by Fujitsu Microelectronics, Inc. (FMI), the United States subsidiary of the Japanese multinational information technology equipment and services company Fujitsu Limited located in San Jose, California. It was a low-end microprocessor primarily developed as an upgrade for the Sun Microsystems microSPARC-II-based SPARCstation 5 workstation. It was introduced on 30 September 1996, with a 170 MHz version priced at US$499 in quantities of 1,000. The TurboSPARC was mostly succeeded in the low-end SPARC market by the UltraSPARC IIi in late 1997, but remained available.
The microSPARC is a microprocessor implementing the SPARC V8 instruction set architecture (ISA) developed by Sun Microsystems. It was a low-end microprocessor intended for low-end workstations and embedded systems. The microprocessor was developed by Sun, but the floating-point unit (FPU) was licensed from Meiko Scientific. It contained 800,000 transistors.
The MB86900 is a microprocessor chip set that implements the SPARC V7 instruction set architecture developed by Sun Microsystems. It was the first implementation of SPARC and was used in the first SPARC-based workstation, the Sun Microsystems Sun-4. The chip set operated at 16.67 MHz. The chip set consisted of two chips, the MB86900 microprocessor and the MB86910 floating-point unit. The chip set was implemented with two 20,000-gate, 1.2 µm complementary metal–oxide–semiconductor (CMOS) gate-arrays fabricated by Fujitsu Limited.
The MCST R1000 is a 64-bit microprocessor developed by Moscow Center of SPARC Technologies (MCST) and fabricated by TSMC.