Imidazoline

Last updated
Structures of 2-, 3-, and 4-imidazolines. Imidazolines.svg
Structures of 2-, 3-, and 4-imidazolines.

Imidazoline is a class of heterocycles formally derived from imidazoles by the reduction of one of the two double bonds. Three isomers are known, 2-imidazolines, 3-imidazolines, and 4-imidazolines. The 2- and 3-imidazolines contain an imine center, whereas the 4-imidazolines contain an alkene group. The 2-Imidazoline group occurs in several drugs. [1]

Chemical relationship of imidazole to its reduced derivatives. Imidazole derivatives.svg
Chemical relationship of imidazole to its reduced derivatives.

Related Research Articles

<span class="mw-page-title-main">Tetryzoline</span> Chemical compound

Tetryzoline is a drug used in some over-the-counter eye drops and nasal sprays. Tetryzoline was patented in 1954, and came into medical use in 1959.

Agmatine, also known as (4-aminobutyl-guanidine) is an aminoguanidine that was discovered in 1910 by Albrecht Kossel. Agmatine is a chemical substance which is naturally created from the amino acid arginine. Agmatine has been shown to exert modulatory action at multiple molecular targets, notably: neurotransmitter systems, ion channels, nitric oxide (NO) synthesis and polyamine metabolism and this provides bases for further research into potential applications.

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. Ethylenediamine is the first member of the so-called polyethylene amines.

<span class="mw-page-title-main">Moxonidine</span> Chemical compound

Moxonidine (INN) is a new-generation alpha-2/imidazoline receptor agonist antihypertensive drug licensed for the treatment of mild to moderate essential hypertension. It may have a role when thiazides, beta-blockers, ACE inhibitors, and calcium channel blockers are not appropriate or have failed to control blood pressure. In addition, it demonstrates favourable effects on parameters of the insulin resistance syndrome, apparently independent of blood pressure reduction. It is also a growth hormone releaser. It is manufactured by Solvay Pharmaceuticals under the brand name Physiotens & Moxon.

<span class="mw-page-title-main">2-Imidazoline</span> Chemical compound

2-Imidazoline (Preferred IUPAC name: 4,5-dihydro-1H-imidazole) is one of three isomers of the nitrogen-containing heterocycle imidazoline, with the formula C3H6N2. The 2-imidazolines are the most common imidazolines commercially, as the ring exists in some natural products and some pharmaceuticals. They also have been examined in the context of organic synthesis, coordination chemistry, and homogeneous catalysis.

<span class="mw-page-title-main">Imidazolidine</span> Chemical compound

Imidazolidine is a heterocyclic compound (CH2)2(NH)2CH2. The parent imidazolidine is lightly studied, but related compounds substituted on one or both nitrogen centers are more common. Generally, they are colorless, polar, basic compounds. Imidazolidines are cyclic 5-membered examples of the general class of aminals.

<span class="mw-page-title-main">Alpha-adrenergic agonist</span> Class of drugs

Alpha-adrenergic agonists are a class of sympathomimetic agents that selectively stimulates alpha adrenergic receptors. The alpha-adrenergic receptor has two subclasses α1 and α2. Alpha 2 receptors are associated with sympatholytic properties. Alpha-adrenergic agonists have the opposite function of alpha blockers. Alpha adrenoreceptor ligands mimic the action of epinephrine and norepinephrine signaling in the heart, smooth muscle and central nervous system, with norepinephrine being the highest affinity. The activation of α1 stimulates the membrane bound enzyme phospholipase C, and activation of α2 inhibits the enzyme adenylate cyclase. Inactivation of adenylate cyclase in turn leads to the inactivation of the secondary messenger cyclic adenosine monophosphate and induces smooth muscle and blood vessel constriction.

<span class="mw-page-title-main">6-MeO-THH</span>

6-MeO-THH, or 6-methoxy-1,2,3,4-tetrahydroharman, is a β-carboline derivative and a structural isomer of tetrahydroharmine (7-MeO-THH). 6-MeO-THH is mentioned in Alexander Shulgin's book TiHKAL, stating that 6-MeO-THH is very similar to the other carbolines. Limited testing suggests that it possesses mild psychoactive effects at 1.5 mg/kg and is said to be about one-third as potent as 6-methoxyharmalan. It has been isolated from certain plants of the Virola family.

Imidazoline receptors are the primary receptors on which clonidine and other imidazolines act. There are three main classes of imidazoline receptor: I1 is involved in inhibition of the sympathetic nervous system to lower blood pressure, I2 has as yet uncertain functions but is implicated in several psychiatric conditions, and I3 regulates insulin secretion.

<span class="mw-page-title-main">NISCH</span>

Nischarin is a protein that in humans is encoded by the NISCH gene.

<span class="mw-page-title-main">Idazoxan</span> Chemical compound

Idazoxan (INN) is a drug which is used in scientific research. It acts as both a selective α2 adrenergic receptor antagonist, and an antagonist for the imidazoline receptor. Idazoxan has been under investigation as an antidepressant, but it did not reach the market as such. More recently, it is under investigation as an adjunctive treatment in schizophrenia. Due to its alpha-2 receptor antagonism it is capable of enhancing therapeutic effects of antipsychotics, possibly by enhancing dopamine neurotransmission in the prefrontal cortex of the brain, a brain area thought to be involved in the pathogenesis of schizophrenia.

<span class="mw-page-title-main">Efaroxan</span> Chemical compound

Efaroxan is an α2-adrenergic receptor antagonist and antagonist of the imidazoline receptor.

<span class="mw-page-title-main">Nutlin</span> Chemical compound

Nutlins are cis-imidazoline analogs which inhibit the interaction between mdm2 and tumor suppressor p53, and which were discovered by screening a chemical library by Vassilev et al. Nutlin-1, nutlin-2, and nutlin-3 were all identified in the same screen; however, Nutlin-3 is the compound most commonly used in anti-cancer studies. Nutlin small molecules occupy p53 binding pocket of MDM2 and effectively disrupt the p53–MDM2 interaction that leads to activation of the p53 pathway in p53 wild-type cells. Inhibiting the interaction between mdm2 and p53 stabilizes p53, and is thought to selectively induce a growth-inhibiting state called senescence in cancer cells. These compounds are therefore thought to work best on tumors that contain normal or "wild-type" p53. Nutlin-3 has been shown to affect the production of p53 within minutes.

<span class="mw-page-title-main">KML-010</span> Chemical compound

KML-010 is a drug derived from spiperone. It functions as a highly selective 5-HT2A receptor antagonist, with negligible affinity for the 5-HT1A or 5-HT2C receptors, and over 400-fold lower affinity for the D2 receptor in comparison to spiperone.

<span class="mw-page-title-main">Tolonidine</span> Chemical compound

Tolonidine is an antihypertensive.

<span class="mw-page-title-main">Tiamenidine</span>

Tiamenidine (BAN, USAN, INN, also known as thiamenidine, Hoe 440) is an imidazoline compound that shares many of the pharmacological properties of clonidine. It is a centrally-acting α2 adrenergic receptor agonist (IC50 = 9.1 nM). It also acts as an α1-adrenergic receptor agonist to a far lesser extent (IC50 = 4.85 μM). In hypertensive volunteers, like clonidine, it significantly increased sinus node recovery time and lowered cardiac output. It was marketed (as tiamenidine hydrochloride) by Sanofi-Aventis under the brand name Sundralen for the management of essential hypertension.

<span class="mw-page-title-main">Aganodine</span> Chemical compound

Aganodine is a guanidine that activates presynaptic imidazoline receptors. Through its agonism at imidazoline receptors, aganodine inhibits the presynaptic release of norepinephrine.

<span class="mw-page-title-main">Imidazolidinone</span>

Imidazolidinones or imidazolinones are a class of 5-membered ring heterocycles structurally related to imidazole. Imidazolidinones feature a saturated C3N2 backbones, except for the presence of a urea or amide functional group in the 2 or 4 positions.

<span class="mw-page-title-main">CR-4056</span> Chemical compound

CR-4056 is an analgesic drug candidate with a novel mechanism of action, acting as a ligand for the imidazoline receptor I2. It showed promising results in animal studies against various types of neuropathic pain, and has reached Phase II human clinical trials as a potential treatment for pain associated with osteoarthritis.

<span class="mw-page-title-main">Midaflur</span>

Midaflur is an extremely stable 3-imidazoline derivative with central skeletal muscle relaxant and sedative properties in humans and other species of mammals, exhibiting consistently high oral bioavailability and a long duration of action. While its pharmacodynamics remain poorly understood, midaflur resembles meprobamate and pentobarbital in terms of observed effects while being considerably more potent.

References

  1. Liu, H. and Du, D.-M. (2009), Recent Advances in the Synthesis of 2-Imidazolines and Their Applications in Homogeneous Catalysis. Adv. Synth. Catal., 351: 489–519. doi: 10.1002/adsc.200800797