Immunoediting

Last updated

Immunoediting is a dynamic process that consists of immunosurveillance and tumor progression. It describes the relation between the tumor cells and the immune system. It is made up of three phases: elimination, equilibrium, and escape. [1]

Contents

Definition

Immunoediting is characterized by changes in the immunogenicity of tumors due to the anti-tumor response of the immune system, resulting in the emergence of immune-resistant variants. [2]

Phase 1: Elimination

During the elimination phase, immune effector cells such as natural killer cells, with the help of dendritic and CD4+ T-cells, are able to recognize and eliminate tumor cells (left). As a result of heterogeneity, however, tumor cells which are less immunogenic are able to escape immunosurveillance (right). Tumor microenvironment.jpg
During the elimination phase, immune effector cells such as natural killer cells, with the help of dendritic and CD4+ T-cells, are able to recognize and eliminate tumor cells (left). As a result of heterogeneity, however, tumor cells which are less immunogenic are able to escape immunosurveillance (right).

The elimination phase, also known as immunosurveillance, includes innate and adaptive immune responses to tumour cells. For the innate immune response, several effector cells such as natural killer cells and T cells are activated by the inflammatory cytokines, which are released by the growing tumour cells, macrophages and stromal cells surrounding the tumour cells. The recruited tumour-infiltrating NK cells and macrophages produce interleukin 12 and interferon gamma, which kill tumour cells by cytotoxic mechanisms such as perforin, TNF-related apoptosis-inducing ligands (TRAILs), and reactive oxygen species. [3] [1] [4] Most of the tumor cells are destroyed in this phase, but some of them survive and are able to reach equilibrium with the immune system.

The elimination phase consists of the following four phases:

The first phase involves the initiation of an antitumor immune response. Cells of the innate immune system recognize the presence of a growing tumor which has undergone stromal remodeling, causing local tissue damage. This is followed by the induction of inflammatory signals which is essential for recruiting cells of the innate immune system (e.g. natural killer cells, natural killer T cells, macrophages and dendritic cells) to the tumor site. During this phase, the infiltrating lymphocytes such as the natural killer cells and natural killer T cells are stimulated to produce IFN-gamma.

In the second phase, newly synthesized IFN-gamma induces tumor death (to a limited amount) as well as promoting the production of chemokines CXCL10, CXCL9 and CXCL11. These chemokines play an important role in promoting tumor death by blocking the formation of new blood vessels. Tumor cell debris produced as a result of tumor death is then ingested by dendritic cells, followed by the migration of these dendritic cells to the draining lymph nodes. The recruitment of more immune cells also occurs and is mediated by the chemokines produced during the inflammatory process.

In the third phase, natural killer cells and macrophages transactivate one another via the reciprocal production of IFN-gamma and IL-12. This again promotes more tumor killing by these cells via apoptosis and the production of reactive oxygen and nitrogen intermediates. In the draining lymph nodes, tumor-specific dendritic cells trigger the differentiation of Th1 cells which in turn facilitates the development of cytotoxic CD8+ T cells also known as killer T-cells.

In the final phase, tumor-specific CD4+ and CD8+ T cells home to the tumor site and the cytotoxic T lymphocytes then destroy the antigen-bearing tumor cells which remain at the site.

Phase 2: Equilibrium

The next step in cancer immunoediting is the equilibrium phase, during which tumor cells that have escaped the elimination phase and have a non-immunogenic phenotype are selected for growth. Lymphocytes and IFN-gamma exert a selection pressure on tumor cells which are genetically unstable and rapidly mutating. Tumor cell variants which have acquired resistance to elimination then enter the escape phase. It is the longest of the three processes in cancer immunoediting and may occur over a period of many years. During this period of Darwinian selection, new tumor cell variants emerge with various mutations that further increase overall resistance to immune attack. [3]

Phase 3: Escape

In the escape phase, tumor cells continue to grow and expand in an uncontrolled manner and may eventually lead to malignancies. In the study of cancer immunoediting, knockout mice have been used for experimentation since human testing is not possible. Tumor infiltration by lymphocytes is seen as a reflection of a tumor-related immune response. [5] There is increasing evidence that biological vesicles (e.g., exosomes) secreted by tumour cells help to foster an immunosuppressive tumour microenvironment. [6] During the escape phase, tumor cell variants selected in the equilibrium phase have breached the host organism's immune defenses, with various genetic and epigenetic changes conferring further resistance to immune detection. [1] There are several mechanisms that lead to escape of cancer cells to immune system, for example downregulation or loss of expression of classical MHC class I (HLA-A, HLA-B- HLA-C) [7] [4] which is essential for effective T cell-mediated immune response (appears in up to 90% of tumours [7] ), development of cancer microenvironment which has suppressive effect on immune system [8] and works as a protective barrier to cancer cells. Cells contained in tumor microenvironment are able to produce cytokines which can cause apoptosis of activated T lymphocyte. [9] Another mechanism of tumor cells to avoid immune system is upregulation of non-classical MHC I (HLA-E, HLA-F, HLA-G) which prevents NK-mediated immune reaction by interaction with NK cells. [10] [11] [4] The tumor begins to develop and grow after escaping the immune system.

Immunoediting in HIV

Recent studies suggest that cells harboring the HIV reservoir may also be undergoing a process of immunoediting, thereby contributing to the increased resistance of these cells to be eliminated by host immune factors. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Macrophage</span> Type of white blood cell

Macrophages are a type of white blood cell of the innate immune system that engulf and digest pathogens, such as cancer cells, microbes, cellular debris, and foreign substances, which do not have proteins that are specific to healthy body cells on their surface. This process is called phagocytosis, which acts to defend the host against infection and injury.

<span class="mw-page-title-main">Natural killer cell</span> Type of cytotoxic lymphocyte

Natural killer cells, also known as NK cells, are a type of cytotoxic lymphocyte critical to the innate immune system. They are a kind of large granular lymphocytes (LGL), and belong to the rapidly expanding family of known innate lymphoid cells (ILC) and represent 5–20% of all circulating lymphocytes in humans. The role of NK cells is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to virus-infected cells, stressed cells, tumor cells, and other intracellular pathogens based on signals from several activating and inhibitory receptors. Most immune cells detect the antigen presented on major histocompatibility complex I (MHC-I) on infected cell surfaces, but NK cells can recognize and kill stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named "natural killers" because of the notion that they do not require activation to kill cells that are missing "self" markers of MHC class I. This role is especially important because harmful cells that are missing MHC I markers cannot be detected and destroyed by other immune cells, such as T lymphocyte cells.

<span class="mw-page-title-main">Cell-mediated immunity</span> Immune response that does not involve antibodies

Cellular immunity, also known as cell-mediated immunity, is an immune response that does not rely on the production of antibodies. Rather, cell-mediated immunity is the activation of phagocytes, antigen-specific cytotoxic T-lymphocytes, and the release of various cytokines in response to an antigen.

<span class="mw-page-title-main">Interleukin 12</span> Interleukin

Interleukin 12 (IL-12) is an interleukin that is naturally produced by dendritic cells, macrophages, neutrophils, helper T cells and human B-lymphoblastoid cells (NC-37) in response to antigenic stimulation. IL-12 belongs to the family of interleukin-12. IL-12 family is unique in comprising the only heterodimeric cytokines, which includes IL-12, IL-23, IL-27 and IL-35. Despite sharing many structural features and molecular partners, they mediate surprisingly diverse functional effects.

Stromal cells, or mesenchymal stromal cells, are differentiating cells found in abundance within bone marrow but can also be seen all around the body. Stromal cells can become connective tissue cells of any organ, for example in the uterine mucosa (endometrium), prostate, bone marrow, lymph node and the ovary. They are cells that support the function of the parenchymal cells of that organ. The most common stromal cells include fibroblasts and pericytes. The term stromal comes from Latin stromat-, "bed covering", and Ancient Greek στρῶμα, strôma, "bed".

<span class="mw-page-title-main">Interferon gamma</span> InterPro Family

Interferon gamma is a dimerized soluble cytokine that is the only member of the type II class of interferons. The existence of this interferon, which early in its history was known as immune interferon, was described by E. F. Wheelock as a product of human leukocytes stimulated with phytohemagglutinin, and by others as a product of antigen-stimulated lymphocytes. It was also shown to be produced in human lymphocytes. or tuberculin-sensitized mouse peritoneal lymphocytes challenged with Mantoux test (PPD); the resulting supernatants were shown to inhibit growth of vesicular stomatitis virus. Those reports also contained the basic observation underlying the now widely employed interferon gamma release assay used to test for tuberculosis. In humans, the IFNG protein is encoded by the IFNG gene.

<span class="mw-page-title-main">Innate immune system</span> Immunity strategy in living beings

The innate immune system or nonspecific immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, prokaryotes, and invertebrates.

<span class="mw-page-title-main">CCL18</span> Mammalian protein found in Homo sapiens

Chemokine ligand 18 (CCL18) is a small cytokine belonging to the CC chemokine family. The functions of CCL18 have been well studied in laboratory settings, however the physiological effects of the molecule in living organisms have been difficult to characterize because there is no similar protein in rodents that can be studied. The receptor for CCL18 has been identified in humans only recently, which will help scientists understand the molecule's role in the body.

<span class="mw-page-title-main">CXCL9</span> Mammalian protein found in Homo sapiens

Chemokine ligand 9 (CXCL9) is a small cytokine belonging to the CXC chemokine family that is also known as monokine induced by gamma interferon (MIG). The CXCL9 is one of the chemokine which plays role to induce chemotaxis, promote differentiation and multiplication of leukocytes, and cause tissue extravasation.

Understanding of the antitumor immunity role of CD4+ T cells has grown substantially since the late 1990s. CD4+ T cells (mature T-helper cells) play an important role in modulating immune responses to pathogens and tumor cells, and are important in orchestrating overall immune responses.

<span class="mw-page-title-main">Cancer immunology</span> Study of the role of the immune system in cancer

Cancer immunology (immuno-oncology) is an interdisciplinary branch of biology and a sub-discipline of immunology that is concerned with understanding the role of the immune system in the progression and development of cancer; the most well known application is cancer immunotherapy, which utilises the immune system as a treatment for cancer. Cancer immunosurveillance and immunoediting are based on protection against development of tumors in animal systems and (ii) identification of targets for immune recognition of human cancer.

Gamma delta T cells are T cells that have a γδ T-cell receptor (TCR) on their surface. Most T cells are αβ T cells with TCR composed of two glycoprotein chains called α (alpha) and β (beta) TCR chains. In contrast, γδ T cells have a TCR that is made up of one γ (gamma) chain and one δ (delta) chain. This group of T cells is usually less common than αβ T cells. Their highest abundance is in the gut mucosa, within a population of lymphocytes known as intraepithelial lymphocytes (IELs).

<span class="mw-page-title-main">CD200</span> Protein found in humans

OX-2 membrane glycoprotein, also named CD200 is a human protein encoded by the CD200 gene. In humans, the CD200 gene is located on chromosome 3 in proximity to genes encoding the other B7 proteins CD80/CD86. In mice, the CD200 gene is located on chromosome 16.

<span class="mw-page-title-main">HAVCR2</span> Protein-coding gene in the species Homo sapiens

Hepatitis A virus cellular receptor 2 (HAVCR2), also known as T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), is a protein that in humans is encoded by the HAVCR2 (TIM-3) gene. HAVCR2 was first described in 2002 as a cell surface molecule expressed on IFNγ producing CD4+ Th1 and CD8+ Tc1 cells. Later, the expression was detected in Th17 cells, regulatory T-cells, and innate immune cells. HAVCR2 receptor is a regulator of the immune response.

The following outline is provided as an overview of and topical guide to immunology:

The pluripotency of biological compounds describes the ability of certain substances to produce several distinct biological responses. Pluripotent is also described as something that has no fixed developmental potential, as in being able to differentiate into different cell types in the case of pluripotent stem cells.

<span class="mw-page-title-main">Robert D. Schreiber</span> American immunologist

Robert D. Schreiber is an immunologist and currently is the Alumni Endowed Professor of Pathology and Immunology at Washington University School of Medicine. Schreiber has led a major revision in our understanding of how the immune system interacts with cancer. His work on the cancer immunoediting hypothesis has helped reveal that the immune system is not only capable of destroying cancers, but can also drive them into a dormant state that, in some cases, results in an improved state of malignancy.

Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells, derived from common lymphoid progenitors (CLPs). In response to pathogenic tissue damage, ILCs contribute to immunity via the secretion of signalling molecules, and the regulation of both innate and adaptive immune cells. ILCs are primarily tissue resident cells, found in both lymphoid, and non- lymphoid tissues, and rarely in the blood. They are particularly abundant at mucosal surfaces, playing a key role in mucosal immunity and homeostasis. Characteristics allowing their differentiation from other immune cells include the regular lymphoid morphology, absence of rearranged antigen receptors found on T cells and B cells, and phenotypic markers usually present on myeloid or dendritic cells.

The Immunologic Constant of Rejection (ICR), is a notion introduced by biologists to group a shared set of genes expressed in tissue destructive-pathogenic conditions like cancer and infection, along a diverse set of physiological circumstances of tissue damage or organ failure, including autoimmune disease or allograft rejection. The identification of shared mechanisms and phenotypes by distinct immune pathologies, marked as a hallmarks or biomarkers, aids in the identification of novel treatment options, without necessarily assessing patients phenomenologies individually.

Autoinflammatory diseases (AIDs) are a group of rare disorders caused by dysfunction of the innate immune system. These responses are characterized by periodic or chronic systemic inflammation, usually without the involvement of adaptive immunity.

References

  1. 1 2 3 Dunn, Gavin P.; Old, Lloyd J.; Schreiber, Robert D. (2004). "The Three Es of Cancer Immunoediting". Annual Review of Immunology. 22 (1): 329–360. CiteSeerX   10.1.1.459.1918 . doi:10.1146/annurev.immunol.22.012703.104803. PMID   15032581.
  2. "Immunoediting". Springer Science+Business Media . Retrieved 26 June 2014.
  3. 1 2 Kim, Ryungsa; Emi, Manabu; Tanabe, Kazuaki (2007). "Cancer immunoediting from immune surveillance to immune escape". Immunology. 121 (1): 1–14. doi:10.1111/j.1365-2567.2007.02587.x. PMC   2265921 . PMID   17386080.
  4. 1 2 3 Wagner, Marek; Koyasu, Shigeo (May 2019). "Cancer Immunoediting by Innate Lymphoid Cells". Trends in Immunology. 40 (5): 415–430. doi:10.1016/j.it.2019.03.004. PMID   30992189. S2CID   119093972.
  5. Odunsi K, Old LJ (2007). "Tumor infiltrating lymphocytes: indicators of tumor-related immune responses". Cancer Immunity. 7: 3. PMC   2935754 . PMID   17311362.
  6. Syn, Nicholas; Wang, Lingzhi; Sethi, Gautam; Thiery, Jean-Paul; Goh, Boon-Cher (2016-07-01). "Exosome-Mediated Metastasis: From Epithelial-Mesenchymal Transition to Escape from Immunosurveillance". Trends in Pharmacological Sciences. 37 (7): 606–617. doi:10.1016/j.tips.2016.04.006. ISSN   1873-3735. PMID   27157716.
  7. 1 2 Garrido, Federico; Romero, Irene; Aptsiauri, Natalia; Garcia-Lora, Angel M. (2016-01-15). "Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype". International Journal of Cancer. 138 (2): 271–280. doi: 10.1002/ijc.29375 . ISSN   1097-0215. PMID   25471439.
  8. Balkwill, Frances R.; Capasso, Melania; Hagemann, Thorsten (2012-12-01). "The tumor microenvironment at a glance". Journal of Cell Science. 125 (Pt 23): 5591–5596. doi: 10.1242/jcs.116392 . ISSN   1477-9137. PMID   23420197.
  9. Dong, Haidong; Strome, Scott E.; Salomao, Diva R.; Tamura, Hideto; Hirano, Fumiya; Flies, Dallas B.; Roche, Patrick C.; Lu, Jun; Zhu, Gefeng (2002). "Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion". Nature Medicine. 8 (8): 793–800. doi:10.1038/nm730. PMID   12091876. S2CID   27694471.
  10. Borrego, F.; Ulbrecht, M.; Weiss, E. H.; Coligan, J. E.; Brooks, A. G. (1998-03-02). "Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis". The Journal of Experimental Medicine. 187 (5): 813–818. doi:10.1084/jem.187.5.813. ISSN   0022-1007. PMC   2212178 . PMID   9480992.
  11. Paul, P.; Rouas-Freiss, N.; Khalil-Daher, I.; Moreau, P.; Riteau, B.; Le Gal, F. A.; Avril, M. F.; Dausset, J.; Guillet, J. G. (1998-04-14). "HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance". Proceedings of the National Academy of Sciences of the United States of America. 95 (8): 4510–4515. Bibcode:1998PNAS...95.4510P. doi: 10.1073/pnas.95.8.4510 . ISSN   0027-8424. PMC   22520 . PMID   9539768.
  12. Huang, Szu-Han; McCann, Chase; Mota, Talia; Wang, Chao; Lipkin, Steven; Jones, R. Brad (2019-08-06). "Have Cells Harboring the HIV Reservoir Been Immunoedited?". Frontiers in Immunology. 10: 1842. doi: 10.3389/fimmu.2019.01842 . ISSN   1664-3224. PMC   6691121 . PMID   31447850.