Independent equation

Last updated
The equations x - 2y = -1, 3x + 5y = 8, and 4x + 3y = 7 are linearly dependent, because 1 times the first equation plus 1 times the second equation reproduces the third equation. But any two of them are independent of each other, since any constant times one of them fails to reproduce the other. Three Intersecting Lines.svg
The equations x 2y = 1, 3x + 5y = 8, and 4x + 3y = 7 are linearly dependent, because 1 times the first equation plus 1 times the second equation reproduces the third equation. But any two of them are independent of each other, since any constant times one of them fails to reproduce the other.
The equations 3x + 2y = 6 and 3x + 2y = 12 are independent, because any constant times one of them fails to produce the other one. Parallel Lines.svg
The equations 3x + 2y = 6 and 3x + 2y = 12 are independent, because any constant times one of them fails to produce the other one.

An independent equation is an equation in a system of simultaneous equations which cannot be derived algebraically from the other equations. [1] The concept typically arises in the context of linear equations. If it is possible to duplicate one of the equations in a system by multiplying each of the other equations by some number (potentially a different number for each equation) and summing the resulting equations, then that equation is dependent on the others. But if this is not possible, then that equation is independent of the others.

If an equation is independent of the other equations in its system, then it provides information beyond that which is provided by the other equations. In contrast, if an equation is dependent on the others, then it provides no information not contained in the others collectively, and the equation can be dropped from the system without any information loss. [2]

(The image is inaccurate) These equations are linearly dependent because -7 times x+1 plus -5 times -2x-1 delivers (-3x+2)/12. In order to get a solution that is not null, there can be no more than two independent linear equations in a 2D plane. 3 equations -1.JPG
(The image is inaccurate) These equations are linearly dependent because -7 times x+1 plus -5 times -2x-1 delivers (-3x+2)/12. In order to get a solution that is not null, there can be no more than two independent linear equations in a 2D plane.

The number of independent equations in a system equals the rank of the augmented matrix of the systemthe system's coefficient matrix with one additional column appended, that column being the column vector of constants.

The number of independent equations in a system of consistent equations (a system that has at least one solution) can never be greater than the number of unknowns. Equivalently, if a system has more independent equations than unknowns, it is inconsistent and has no solutions.

See also

Related Research Articles

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855). To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations:

<span class="mw-page-title-main">Linear algebra</span> Branch of mathematics

Linear algebra is the branch of mathematics concerning linear equations such as:

In linear algebra, the rank of a matrix A is the dimension of the vector space generated by its columns. This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. Rank is thus a measure of the "nondegenerateness" of the system of linear equations and linear transformation encoded by A. There are multiple equivalent definitions of rank. A matrix's rank is one of its most fundamental characteristics.

<span class="mw-page-title-main">Linear subspace</span> In mathematics, vector subspace

In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces.

<span class="mw-page-title-main">System of linear equations</span> Several equations of degree 1 to be solved simultaneously

In mathematics, a system of linear equations is a collection of one or more linear equations involving the same variables.

In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-sides of the equations. It is named after Gabriel Cramer (1704–1752), who published the rule for an arbitrary number of unknowns in 1750, although Colin Maclaurin also published special cases of the rule in 1748.

In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable in the input dataset and the output of the (linear) function of the independent variable.

In linear algebra, an eigenvector or characteristic vector of a linear transformation is a nonzero vector that changes at most by a constant factor when that linear transformation is applied to it. The corresponding eigenvalue, often represented by , is the multiplying factor.

In linear algebra, an augmented matrix is a matrix obtained by appending the columns of two given matrices, usually for the purpose of performing the same elementary row operations on each of the given matrices.

In mathematics, particularly in algebra, an indeterminate system is a system of simultaneous equations which has more than one solution. In the case of a linear system, the system may be said to be underspecified, in which case the presence of more than one solution would imply an infinite number of solutions, but that property does not extend to nonlinear systems.

Numerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of. Numerical linear algebra uses properties of vectors and matrices to develop computer algorithms that minimize the error introduced by the computer, and is also concerned with ensuring that the algorithm is as efficient as possible.

In mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. An overdetermined system is almost always inconsistent when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others.

In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called "spectral decomposition", derived from the spectral theorem.

In mathematics, a system of linear equations or a system of polynomial equations is considered underdetermined if there are fewer equations than unknowns. The terminology can be explained using the concept of constraint counting. Each unknown can be seen as an available degree of freedom. Each equation introduced into the system can be viewed as a constraint that restricts one degree of freedom.

In mathematics, more specifically in linear algebra, the spark of a matrix is the smallest integer such that there exists a set of columns in which are linearly dependent. If all the columns are linearly independent, is usually defined to be 1 more than the number of rows. The concept of matrix spark finds applications in error-correction codes, compressive sensing, and matroid theory, and provides a simple criterion for maximal sparsity of solutions to a system of linear equations.

<span class="mw-page-title-main">Matrix (mathematics)</span> Array of numbers

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.

In algebra, linear equations and systems of linear equations over a field are widely studied. "Over a field" means that the coefficients of the equations and the solutions that one is looking for belong to a given field, commonly the real or the complex numbers. This article is devoted to the same problems where "field" is replaced by "commutative ring", or, typically "Noetherian integral domain".

In mathematics and particularly in algebra, a system of equations is called consistent if there is at least one set of values for the unknowns that satisfies each equation in the system—that is, when substituted into each of the equations, they make each equation hold true as an identity. In contrast, a linear or non linear equation system is called inconsistent if there is no set of values for the unknowns that satisfies all of the equations.

References

  1. PSAT/NMSQT 2017 : strategies, practice & review with 2 practice tests. Kaplan Test Prep and Admissions, Kaplan Publishing (2017 ed.). New York. 2016. p. 38. ISBN   978-1-5062-1030-8. OCLC   953202269.{{cite book}}: CS1 maint: location missing publisher (link) CS1 maint: others (link)
  2. Roe, E. D. (1918). "A Geometric Representation". The Mathematics Teacher. 10 (4): 205–210. doi:10.5951/MT.10.4.0205. ISSN   0025-5769. JSTOR   27950145.