Inductive miner

Last updated

Inductive miner belongs to a class of algorithms used in process discovery. [1] Various algorithms proposed previously give process models of slightly different type from the same input. The quality of the output model depends on the soundness of the model. A number of techniques such as alpha miner, genetic miner, work on the basis of converting an event log into a workflow model, however, they do not produce models that are sound all the time. Inductive miner relies on building a directly follows graph from event log and using this graph to detect various process relations. [2]

Contents

Definitions

A directly follows graph is a directed graph that connects an activity A to another activity B if and only if activity B occurs chronologically right after activity A for any given case in the respective event log. A directly follows graph is represented mathematically by:

[2]

Where

(activities in the log)

(directly follows relation)

The inductive miner technique relies on the detection of various cuts on the directly follows graph created using the event log. The core idea behind inductive miner lies in the unique methodology of discovering various divisions of the arcs in the directly follows graph, and using the smaller components after division to represent the execution sequence of the activities.The inductive miner algorithm uses the directly follows graph to detect one of the following cuts. [2]

is an exclusive OR cut iff: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \forall i,j \in \{1, .. , n\} (\forall a \in A_i, b \in A_j (i \neq j \Rightarrow \neg(a \rightarrow_L b) )) }

XOR cut - inductive miner Xor-for-inductive-miner.png
XOR cut - inductive miner

is a sequence cut iff:

Sequence cut - inductive miner Sequence-for-inductive-miner.png
Sequence cut - inductive miner

is a parallel cut iff:

-

-

Parallel cut - inductive miner Parallel-for-inductive-miner.png
Parallel cut - inductive miner

is a redo loop cut iff:

-

-

-

-

-

Loop cut - inductive miner Loop-for-inductive-miner.png
Loop cut - inductive miner

Types

  1. Inductive miner with fall through: The complex event log sometimes would make it impossible to detect any cuts using the above techniques. In that case, there are additional fall throughs that can be applied to obtain better representation of process tree instead of a flower model. [3] [4]
  2. Inductive miner frequency-based: The less frequent relations in the event log sometimes creates problems in detecting any type of cuts. In that case, the directly follows relations below a certain threshold are removed from the directly follows graph and the resultant graph is used for detecting the cuts. [5]
  3. Inductive miner for big data: This includes an improvement on the existing inductive miner to handle big data sets.[ citation needed ]

Related Research Articles

Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called relevant logic by British and, especially, Australian logicians, and relevance logic by American logicians.

Additive white Gaussian noise (AWGN) is a basic noise model used in information theory to mimic the effect of many random processes that occur in nature. The modifiers denote specific characteristics:

In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.

<span class="mw-page-title-main">Random graph</span> Graph generated by a random process

In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, random graph refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a random graph.

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

<span class="mw-page-title-main">Tournament (graph theory)</span> Directed graph where each vertex pair has one arc

A tournament is a directed graph (digraph) obtained by assigning a direction for each edge in an undirected complete graph. That is, it is an orientation of a complete graph, or equivalently a directed graph in which every pair of distinct vertices is connected by a directed edge with any one of the two possible orientations.

<span class="mw-page-title-main">Maximal independent set</span> Independent set which is not a subset of any other independent set

In graph theory, a maximal independent set (MIS) or maximal stable set is an independent set that is not a subset of any other independent set. In other words, there is no vertex outside the independent set that may join it because it is maximal with respect to the independent set property.

In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first-order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory restricts the bound variables in the schematic formula appearing in the axiom schema of Class Comprehension to range over sets alone, Morse–Kelley set theory allows these bound variables to range over proper classes as well as sets, as first suggested by Quine in 1940 for his system ML.

A data dependency in computer science is a situation in which a program statement (instruction) refers to the data of a preceding statement. In compiler theory, the technique used to discover data dependencies among statements is called dependence analysis.

In computer networks, self-similarity is a feature of network data transfer dynamics. When modeling network data dynamics the traditional time series models, such as an autoregressive moving average model are not appropriate. This is because these models only provide a finite number of parameters in the model and thus interaction in a finite time window, but the network data usually have a long-range dependent temporal structure. A self-similar process is one way of modeling network data dynamics with such a long range correlation. This article defines and describes network data transfer dynamics in the context of a self-similar process. Properties of the process are shown and methods are given for graphing and estimating parameters modeling the self-similarity of network data.

The α-algorithm or α-miner is an algorithm used in process mining, aimed at reconstructing causality from a set of sequences of events. It was first put forward by van der Aalst, Weijters and Măruşter. The goal of Alpha miner is to convert the event log into a workflow-net based on the relations between various activities in the event log. An event log is a multi-set of traces, and a trace is a sequence of activity names. Several extensions or modifications of it have since been presented, which will be listed below.

<span class="mw-page-title-main">Voter model</span>

In the mathematical theory of probability, the voter model is an interacting particle system introduced by Richard A. Holley and Thomas M. Liggett in 1975.

Inductive probability attempts to give the probability of future events based on past events. It is the basis for inductive reasoning, and gives the mathematical basis for learning and the perception of patterns. It is a source of knowledge about the world.

In mathematical logic, the spectrum of a sentence is the set of natural numbers occurring as the size of a finite model in which a given sentence is true. By a result in descriptive complexity, a set of natural numbers is a spectrum if and only if it can be recognized in non-deterministic exponential time.

Bounded arithmetic is a collective name for a family of weak subtheories of Peano arithmetic. Such theories are typically obtained by requiring that quantifiers be bounded in the induction axiom or equivalent postulates. The main purpose is to characterize one or another class of computational complexity in the sense that a function is provably total if and only if it belongs to a given complexity class. Further, theories of bounded arithmetic present uniform counterparts to standard propositional proof systems such as Frege system and are, in particular, useful for constructing polynomial-size proofs in these systems. The characterization of standard complexity classes and correspondence to propositional proof systems allows to interpret theories of bounded arithmetic as formal systems capturing various levels of feasible reasoning.

Graph cut optimization is a combinatorial optimization method applicable to a family of functions of discrete variables, named after the concept of cut in the theory of flow networks. Thanks to the max-flow min-cut theorem, determining the minimum cut over a graph representing a flow network is equivalent to computing the maximum flow over the network. Given a pseudo-Boolean function , if it is possible to construct a flow network with positive weights such that

Cederbaum's theorem defines hypothetical analog electrical networks which will automatically produce a solution to the minimum s–t cut problem. Alternatively, simulation of such a network will also produce a solution to the minimum s–t cut problem. This article gives basic definitions, a statement of the theorem and a proof of the theorem. The presentation in this article closely follows the presentation of the theorem in the original publication.

In set theory and logic, Buchholz's ID hierarchy is a hierarchy of subsystems of first-order arithmetic. The systems/theories are referred to as "the formal theories of ν-times iterated inductive definitions". IDν extends PA by ν iterated least fixed points of monotone operators.

References

  1. Wil van der Aalst (March 2010). "Process Discovery Capturing the Invisible". IEEE Computational Intelligence Magazine. 5: 28–41. doi:10.1109/MCI.2009.935307. S2CID   14520822.
  2. 1 2 3 Leemans, Sander J. J.; Fahland, Dirk; van der Aalst, Wil M. P. (2013). Colom, José-Manuel; Desel, Jörg (eds.). "Discovering Block-Structured Process Models from Event Logs - A Constructive Approach". Application and Theory of Petri Nets and Concurrency. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. 7927: 311–329. doi:10.1007/978-3-642-38697-8_17. ISBN   978-3-642-38697-8.
  3. Ghawi, Raji (2016). "Process Discovery using Inductive Miner and Decomposition". arXiv: 1610.07989 [cs.AI].
  4. Leemans, S. J. J. (2017-05-09). Robust process mining with guarantees - SIKS Dissertation Series No. 2017-12 (PDF). TU/e - Eindhoven University of Technology. ISBN   978-90-386-4257-4.
  5. Leemans, Sander J. J.; Fahland, Dirk; van der Aalst, Wil M. P. (2014). Lohmann, Niels; Song, Minseok; Wohed, Petia (eds.). "Discovering Block-Structured Process Models from Event Logs Containing Infrequent Behaviour". Business Process Management Workshops. Lecture Notes in Business Information Processing. Cham: Springer International Publishing. 171: 66–78. doi:10.1007/978-3-319-06257-0_6. ISBN   978-3-319-06257-0.