Inferential theory of learning

Last updated
Inferences are kept in the middle of all categories. Inferential Theory.gif
Inferences are kept in the middle of all categories.

Inferential Theory of Learning (ITL) is an area of machine learning which describes inferential processes performed by learning agents. ITL has been continuously developed by Ryszard S. Michalski, starting in the 1980s. The first known publication of ITL was in 1983. [1] In the ITL learning process is viewed as a search (inference) through hypotheses space guided by a specific goal. The results of learning need to be stored. Stored information will later be used by the learner for future inferences. [2] Inferences are split into multiple categories including conclusive, deduction, and induction. In order for an inference to be considered complete it was required that all categories must be taken into account. [3] This is how the ITL varies from other machine learning theories like Computational Learning Theory and Statistical Learning Theory; which both use singular forms of inference.

Contents

Usage

The most relevant published usage of ITL was in scientific journal published in 2012 and used ITL as a way to describe how agent-based learning works. According to the journal "The Inferential Theory of Learning (ITL) provides an elegant way of describing learning processes by agents". [4]

Related Research Articles

<span class="mw-page-title-main">Knowledge representation and reasoning</span> Field of artificial intelligence

Knowledge representation and reasoning is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.

<span class="mw-page-title-main">Case-based reasoning</span> Process of solving new problems based on the solutions of similar past problems

In artificial intelligence and philosophy, case-based reasoning (CBR), broadly construed, is the process of solving new problems based on the solutions of similar past problems.

<span class="mw-page-title-main">Distributed artificial intelligence</span>

Distributed Artificial Intelligence (DAI) also called Decentralized Artificial Intelligence is a subfield of artificial intelligence research dedicated to the development of distributed solutions for problems. DAI is closely related to and a predecessor of the field of multi-agent systems.

<span class="mw-page-title-main">Symbolic artificial intelligence</span> Methods in artificial intelligence research

In artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems, symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems. The Symbolic AI paradigm led to seminal ideas in search, symbolic programming languages, agents, multi-agent systems, the semantic web, and the strengths and limitations of formal knowledge and reasoning systems.

A non-monotonic logic is a formal logic whose conclusion relation is not monotonic. In other words, non-monotonic logics are devised to capture and represent defeasible inferences, i.e., a kind of inference in which reasoners draw tentative conclusions, enabling reasoners to retract their conclusion(s) based on further evidence. Most studied formal logics have a monotonic entailment relation, meaning that adding a formula to a theory never produces a pruning of its set of conclusions. Intuitively, monotonicity indicates that learning a new piece of knowledge cannot reduce the set of what is known. A monotonic logic cannot handle various reasoning tasks such as reasoning by default, abductive reasoning, some important approaches to reasoning about knowledge, and similarly, belief revision.

<span class="mw-page-title-main">Graphical model</span> Probabilistic model

A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. They are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning.

In artificial intelligence (AI), commonsense reasoning is a human-like ability to make presumptions about the type and essence of ordinary situations humans encounter every day. These assumptions include judgments about the nature of physical objects, taxonomic properties, and peoples' intentions. A device that exhibits commonsense reasoning might be capable of drawing conclusions that are similar to humans' folk psychology and naive physics.

In artificial intelligence research, commonsense knowledge consists of facts about the everyday world, such as "Lemons are sour", or "Cows say moo", that all humans are expected to know. It is currently an unsolved problem in Artificial General Intelligence. The first AI program to address common sense knowledge was Advice Taker in 1959 by John McCarthy.

Conceptual clustering is a machine learning paradigm for unsupervised classification that has been defined by Ryszard S. Michalski in 1980 and developed mainly during the 1980s. It is distinguished from ordinary data clustering by generating a concept description for each generated class. Most conceptual clustering methods are capable of generating hierarchical category structures; see Categorization for more information on hierarchy. Conceptual clustering is closely related to formal concept analysis, decision tree learning, and mixture model learning.

STUDENT is an early artificial intelligence program that solves algebra word problems. It is written in Lisp by Daniel G. Bobrow as his PhD thesis in 1964. It was designed to read and solve the kind of word problems found in high school algebra books. The program is often cited as an early accomplishment of AI in natural language processing.

<span class="mw-page-title-main">Jaime Carbonell</span> American computer scientist (1953–2020)

Jaime Guillermo Carbonell was a computer scientist who made seminal contributions to the development of natural language processing tools and technologies. His extensive research in machine translation resulted in the development of several state-of-the-art language translation and artificial intelligence systems. He earned his B.S. degrees in Physics and in Mathematics from MIT in 1975 and did his Ph.D. under Dr. Roger Schank at Yale University in 1979. He joined Carnegie Mellon University as an assistant professor of computer science in 1979 and lived in Pittsburgh from then. He was affiliated with the Language Technologies Institute, Computer Science Department, Machine Learning Department, and Computational Biology Department at Carnegie Mellon.

James Frederick Allen is a computational linguist recognized for his contributions to temporal logic, in particular Allen's interval algebra. He is interested in knowledge representation, commonsense reasoning, and natural language understanding, believing that "deep language understanding can only currently be achieved by significant hand-engineering of semantically-rich formalisms coupled with statistical preferences". He is the John H. Dessaurer Professor of Computer Science at the University of Rochester

<span class="mw-page-title-main">Eric Horvitz</span> American computer scientist, and Technical Fellow at Microsoft

Eric Joel Horvitz is an American computer scientist, and Technical Fellow at Microsoft, where he serves as the company's first Chief Scientific Officer. He was previously the director of Microsoft Research Labs, including research centers in Redmond, WA, Cambridge, MA, New York, NY, Montreal, Canada, Cambridge, UK, and Bangalore, India.

Tom Michael Mitchell is an American computer scientist and the Founders University Professor at Carnegie Mellon University (CMU). He is a founder and former Chair of the Machine Learning Department at CMU. Mitchell is known for his contributions to the advancement of machine learning, artificial intelligence, and cognitive neuroscience and is the author of the textbook Machine Learning. He is a member of the United States National Academy of Engineering since 2010. He is also a Fellow of the American Academy of Arts and Sciences, the American Association for the Advancement of Science and a Fellow and past President of the Association for the Advancement of Artificial Intelligence. In October 2018, Mitchell was appointed as the Interim Dean of the School of Computer Science at Carnegie Mellon.

GOFAI is an acronym for "Good Old-Fashioned Artificial Intelligence" invented by the philosopher John Haugeland in his 1985 book, Artificial Intelligence: The Very Idea. Technically, GOFAI refers only to a restricted kind of symbolic AI, namely rule-based or logical agents. This approach was popular in the 1980s, especially as an approach to implementing expert systems, but symbolic AI has since been extended in many ways to better handle uncertain reasoning and more open-ended systems. Some of these extensions include probabilistic reasoning, non-monotonic reasoning, multi-agent systems, and neuro-symbolic systems. Significant contributions of symbolic AI, not encompassed by the GOFAI view, include search algorithms; automated planning and scheduling; constraint-based reasoning; the semantic web; ontologies; knowledge graphs; non-monotonic logic; circumscription; automated theorem proving; and symbolic mathematics. For a more complete list, see the main article on symbolic AI.

Ryszard S. Michalski was a Polish-American computer scientist. Michalski was Professor at George Mason University and a pioneer in the field of machine learning.

<span class="mw-page-title-main">Glossary of artificial intelligence</span> List of definitions of terms and concepts commonly used in the study of artificial intelligence

This glossary of artificial intelligence is a list of definitions of terms and concepts relevant to the study of artificial intelligence, its sub-disciplines, and related fields. Related glossaries include Glossary of computer science, Glossary of robotics, and Glossary of machine vision.

<span class="mw-page-title-main">Outline of machine learning</span> Overview of and topical guide to machine learning

The following outline is provided as an overview of and topical guide to machine learning. Machine learning is a subfield of soft computing within computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

<span class="mw-page-title-main">Richard Neapolitan</span>

Richard Eugene Neapolitan was an American scientist. Neapolitan is most well-known for his role in establishing the use of probability theory in artificial intelligence and in the development of the field Bayesian networks.

References

  1. Michalski, Ryszard S. (1993). "Inferential theory of learning as a conceptual basis for multistrategy learning". Machine Learning. 11 (2–3): 111–151. doi: 10.1007/bf00993074 . ISSN   0885-6125.
  2. "Inferential Theory of Learning – GMU Machine Learning and Inference Laboratory". www.mli.gmu.edu. Retrieved 2018-12-04.
  3. Naidenova, Xenia (2010). Machine learning methods for commonsense reasoning processes : interactive models. Hershey, PA: Information Science Reference. ISBN   9781605668109. OCLC   606360112.
  4. Wojtusiak, Janusz; Warden, Tobias; Herzog, Otthein (December 2012). "Machine learning in agent-based stochastic simulation: Inferential theory and evaluation in transportation logistics". Computers & Mathematics with Applications. 64 (12): 3658–3665. doi: 10.1016/j.camwa.2012.01.079 . ISSN   0898-1221.

Further reading