Infrared divergence

Last updated

In physics, an infrared divergence (also IR divergence or infrared catastrophe) is a situation in which an integral, for example a Feynman diagram, diverges because of contributions of objects with very small energy approaching zero, or equivalently, because of physical phenomena at very long distances.

Contents

Overview

The infrared divergence only appears in theories with massless particles (such as photons). They represent a legitimate effect that a complete theory often implies. In fact, in the case of photons, the energy is given by , where is the frequency associated to the particle and as it goes to zero, like in the case of soft photons, there will be an infinite number of particles in order to have a finite amount of energy. One way to deal with it is to impose an infrared cutoff and take the limit as the cutoff approaches zero and/or refine the question. Another way is to assign the massless particle a fictitious mass, and then take the limit as the fictitious mass vanishes.

The divergence is usually in terms of particle number and not empirically troubling, in that all measurable quantities remain finite. [1] [2] (Unlike in the case of the UV catastrophe where the energies involved diverge.)

Bremsstrahlung example

When an electric charge is accelerated (or decelerated) it emits Bremsstrahlung radiation. Semiclassical electromagnetic theory, or the full quantum electrodynamic analysis, shows that an infinite number of soft photons are created. But only a finite number are detectable, the remainder, due to their low energy, falling below any finite energy detection threshold, which must necessarily exist. [1] However even though most of the photons are not detectable they can't be ignored in the theory; quantum electrodynamic calculations show that the transition amplitude between any states with a finite number of photons vanishes. Finite transition amplitudes are obtained only by summing over states with an infinite number of soft photons. [1] [2]

The zero-energy photons become important in analyzing the Bremsstrahlung radiation in the coaccelerated frame in which the charge experiences a thermal bath due to the Unruh effect. In this case, the static charge will only interact with these zero-energy (Rindler) photons in a sense similar to virtual photons in the coulomb interaction. [3] [4]

See also

Related Research Articles

In theories of quantum gravity, the graviton is the hypothetical quantum of gravity, an elementary particle that mediates the force of gravitational interaction. There is no complete quantum field theory of gravitons due to an outstanding mathematical problem with renormalization in general relativity. In string theory, believed by some to be a consistent theory of quantum gravity, the graviton is a massless state of a fundamental string.

<span class="mw-page-title-main">Photon</span> Elementary particle or quantum of light

A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always move at the speed of light in vacuum, 299792458 m/s. The photon belongs to the class of bosons.

<span class="mw-page-title-main">Quantum field theory</span> Theoretical framework combining classical field theory, special relativity, and quantum mechanics

In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles.

<span class="mw-page-title-main">Quantum electrodynamics</span> Quantum field theory of electromagnetism

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

<span class="mw-page-title-main">Renormalization</span> Method in physics used to deal with infinities

Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similar geometric structures, that are used to treat infinities arising in calculated quantities by altering values of these quantities to compensate for effects of their self-interactions. But even if no infinities arose in loop diagrams in quantum field theory, it could be shown that it would be necessary to renormalize the mass and fields appearing in the original Lagrangian.

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

Vacuum energy is an underlying background energy that exists in space throughout the entire Universe. The vacuum energy is a special case of zero-point energy that relates to the quantum vacuum.

<span class="mw-page-title-main">Yang–Mills theory</span> Physical theory unifying the electromagnetic, weak and strong interactions

In mathematical physics, Yang–Mills theory is a gauge theory based on a special unitary group SU(N), or more generally any compact, reductive Lie algebra. Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces as well as quantum chromodynamics, the theory of the strong force. Thus it forms the basis of our understanding of the Standard Model of particle physics.

<span class="mw-page-title-main">Coupling constant</span> Parameter describing the strength of a force

In physics, a coupling constant or gauge coupling parameter, is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies divided by the distance squared, , between the bodies; thus: in for Newtonian gravity and in for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers.

The Unruh effect is a kinematic prediction of quantum field theory that an accelerating observer will observe a thermal bath, like blackbody radiation, whereas an inertial observer would observe none. In other words, the background appears to be warm from an accelerating reference frame; in layman's terms, an accelerating thermometer in empty space, removing any other contribution to its temperature, will record a non-zero temperature, just from its acceleration. Heuristically, for a uniformly accelerating observer, the ground state of an inertial observer is seen as a mixed state in thermodynamic equilibrium with a non-zero temperature bath.

In physics, an ultraviolet divergence or UV divergence is a situation in which an integral, for example a Feynman diagram, diverges because of contributions of objects with unbounded energy, or, equivalently, because of physical phenomena at infinitesimal distances.

<span class="mw-page-title-main">Quantum field theory in curved spacetime</span> Extension of quantum field theory to curved spacetime

In theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields, or by time-independent gravitational fields that contain horizons. The most famous example of the latter is the phenomenon of Hawking radiation emitted by black holes.

In physics, especially quantum field theory, regularization is a method of modifying observables which have singularities in order to make them finite by the introduction of a suitable parameter called the regulator. The regulator, also known as a "cutoff", models our lack of knowledge about physics at unobserved scales. It compensates for the possibility that "new physics" may be discovered at those scales which the present theory is unable to model, while enabling the current theory to give accurate predictions as an "effective theory" within its intended scale of use.

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). QED was so successful and accurately predictive that efforts were made to apply the same basic concepts for the other forces of nature. By the late 1970s, these efforts successfully utilized gauge theory in the strong nuclear force and weak nuclear force, producing the modern Standard Model of particle physics.

In a quantum field theory, one may calculate an effective or running coupling constant that defines the coupling of the theory measured at a given momentum scale. One example of such a coupling constant is the electric charge.

The Gross–Neveu (GN) model is a quantum field theory model of Dirac fermions interacting via four fermion interactions in 1 spatial and 1 time dimension. It was introduced in 1974 by David Gross and André Neveu as a toy model for quantum chromodynamics (QCD), the theory of strong interactions. It shares several features of the QCD: GN theory is asymptotically free thus at strong coupling the strength of the interaction gets weaker and the corresponding function of the interaction coupling is negative, the theory has a dynamical mass generation mechanism with chiral symmetry breaking, and in the large number of flavor limit, GN theory behaves as t'Hooft's large limit in QCD.

An infraparticle is an electrically charged particle and its surrounding cloud of soft photons—of which there are infinite number, by virtue of the infrared divergence of quantum electrodynamics. That is, it is a dressed particle rather than a bare particle. Whenever electric charges accelerate they emit Bremsstrahlung radiation, whereby an infinite number of the virtual soft photons become real particles. However, only a finite number of these photons are detectable, the remainder falling below the measurement threshold.

<span class="mw-page-title-main">Quantum triviality</span> Possible outcome of renormalization in physics

In a quantum field theory, charge screening can restrict the value of the observable "renormalized" charge of a classical theory. If the only resulting value of the renormalized charge is zero, the theory is said to be "trivial" or noninteracting. Thus, surprisingly, a classical theory that appears to describe interacting particles can, when realized as a quantum field theory, become a "trivial" theory of noninteracting free particles. This phenomenon is referred to as quantum triviality. Strong evidence supports the idea that a field theory involving only a scalar Higgs boson is trivial in four spacetime dimensions, but the situation for realistic models including other particles in addition to the Higgs boson is not known in general. Nevertheless, because the Higgs boson plays a central role in the Standard Model of particle physics, the question of triviality in Higgs models is of great importance.

In quantum field theory, and especially in quantum electrodynamics, the interacting theory leads to infinite quantities that have to be absorbed in a renormalization procedure, in order to be able to predict measurable quantities. The renormalization scheme can depend on the type of particles that are being considered. For particles that can travel asymptotically large distances, or for low energy processes, the on-shell scheme, also known as the physical scheme, is appropriate. If these conditions are not fulfilled, one can turn to other schemes, like the minimal subtraction scheme.

<span class="mw-page-title-main">Asymptotic safety in quantum gravity</span> Attempt to find a consistent theory of quantum gravity

Asymptotic safety is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences. Although originally proposed by Steven Weinberg to find a theory of quantum gravity, the idea of a nontrivial fixed point providing a possible UV completion can be applied also to other field theories, in particular to perturbatively nonrenormalizable ones. In this respect, it is similar to quantum triviality.

References

  1. 1 2 3 Kaku, Michio (1993). Quantum Field Theory: A Modern Introduction. New York: Oxford University Press. ISBN   0-19-507652-4., pages 177-184 and appendix A6
  2. 1 2 Claude Itzykson, Jean-Bernard Zuber (1980). Quantum Field Theory . McGraw-Hill. pp.  172/3. ISBN   0-07-032071-3.
  3. Higuchi, A.; Matsas, G. E. A.; Sudarsky, D. (1992-05-15). "Bremssstrahlung and zero-energy Rindler photons". Physical Review D. 45 (10): R3308–R3311. Bibcode:1992PhRvD..45.3308H. doi:10.1103/PhysRevD.45.R3308. PMID   10014292.
  4. Higuchi, A.; Matsas, G. E. A.; Sudarsky, D. (1992-10-15). "Bremsstrahlung and Fulling-Davies-Unruh thermal bath". Physical Review D. 46 (8): 3450–3457. Bibcode:1992PhRvD..46.3450H. doi:10.1103/PhysRevD.46.3450. PMID   10015290.