Insbot

Last updated

Insbot is a robotic cockroach developed in 2002 [1] by scientists of the European project LEURRE. It is designed to trick real cockroaches into following its lead, with the goal of finding ways of adapting their behavior as a means of natural pest control. [2] At first, Insbot's predecessor, Alice robot, faced some setbacks due to its size and its inability to properly recognize the cockroaches. But after a series of tests, this newer model was developed. It contains more sensors and computational power, which allows it to interact with the cockroaches more efficiently.

Contents

Development of Insbot

The scientists from LEURRE developed the first Insbot in 2002 [1] and it has been undergoing development since. It runs on wheels and contains many computer processors, which are connected to cameras and proximity sensors, to help it avoid bumping into obstacles or other cockroaches. [2] In the early stages of production, the group of scientists from LEURRE used a prior model, Alice robot, to conduct acceptance tests to determine how compatible the robot is within the society of cockroaches. The main challenges they faced were the robot's small size, the high level of integration (many sensors), and the darkness of the cockroach cuticle (Infrared (IR) sensors sensitivity). With the help of these tests, the scientists built a newer model which contained IR emitters with increased power, wireless communication modules for monitoring, additional sensors, more computational power, and a greater memory. [3]

How it works

The Insbot is composed of two different types of sensors, IR and chemical, and linear cameras.

The sensors help the robot maneuver itself and identify other cockroaches. One recent challenge was to find a way to add pheromones to the robot which would allow it to communicate and build trust with the other cockroaches. [2] With the help of chemical sensors, the robot is able to emit the cockroach chemical signal that is present on the surface of cockroaches. With these sensors, the robot attracts the other cockroaches. If it does not have them, it scares them away because the cockroaches think it is a predator. [4]

The IR sensors are used to measure proximity, which is important because the robot's behavior is controlled by proximity information. All of its movements and actions depend on where it is and what surrounds it. The IR sensors are also used to distinguish between another cockroach and an obstacle. A sensor is placed on the top of the robot and is activated when it is near an obstacle. Two more sensors are placed at the bottom of the robot and are activated when it is near other cockroaches.

The robot contains linear cameras which are used to identify objects or other cockroaches which are out of the reach of the IR sensors. It identifies dark spots to be a group of cockroaches. [3]

With all of these components, Insbot is able to analyze the movements and behaviors of the cockroaches and mimic them. [1]

Mission

Through the help of Insbot, LEURRE plans to study and control the behavioral models of mixed societies (societies made up of robots and animals) in an effort to prove that is it possible to change the global behavior of the mixed society by placing a certain number of robots in it. [3]

Small scale applications

With its ability to mimic their behavior and smell, Insbot is able to fool the rest of the cockroaches into believing that it is a part of the group. Once this has been accomplished, it then is able to establish itself as leader of the group. In this position, the scientists hope it can get the rest of the cockroaches to follow it out of their hiding places into the open where pest controllers can target them. [2]

Larger scale applications

Besides pest control, the scientists believe the robot could be helpful to create other forms of artificial intelligence. [2] If Insbot is able to accomplish the task of getting the rest of the cockroaches to follow its lead, it will show that mixed societies can actually be controlled. This control of interactions between artificial life and living organisms is important in many scientific fields like medicine, agriculture, and ethology because all biological levels are taken into account: the cellular level, the organism level, and the human level. The cellular level regards to the mixture of artificial systems and cells like neurons. The organism level regards to intelligent prosthesis. The human level regards to cooperation between humans and robots. [3]

Related Research Articles

Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions. Understanding in this context means the transformation of visual images into descriptions of the world that make sense to thought processes and can elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory.

Subsumption architecture is a reactive robotic architecture heavily associated with behavior-based robotics which was very popular in the 1980s and 90s. The term was introduced by Rodney Brooks and colleagues in 1986. Subsumption has been widely influential in autonomous robotics and elsewhere in real-time AI.

Robotic control is the system that contributes to the movement of robots. This involves the mechanical aspects and programmable systems that makes it possible to control robots. Robotics can be controlled by various means including manual, wireless, semi-autonomous, and fully autonomous.

<span class="mw-page-title-main">Swarm behaviour</span> Collective behaviour of a large number of (usually) self-propelled entities of similar size

Swarm behaviour, or swarming, is a collective behaviour exhibited by entities, particularly animals, of similar size which aggregate together, perhaps milling about the same spot or perhaps moving en masse or migrating in some direction. It is a highly interdisciplinary topic.

Bio-inspired computing, short for biologically inspired computing, is a field of study which seeks to solve computer science problems using models of biology. It relates to connectionism, social behavior, and emergence. Within computer science, bio-inspired computing relates to artificial intelligence and machine learning. Bio-inspired computing is a major subset of natural computation.

Behavior-based robotics (BBR) or behavioral robotics is an approach in robotics that focuses on robots that are able to exhibit complex-appearing behaviors despite little internal variable state to model its immediate environment, mostly gradually correcting its actions via sensory-motor links.

<span class="mw-page-title-main">Francesco Mondada</span>

Francesco Mondada is a Swiss professor in artificial intelligence and robotics. He got a Master's degree in Microengineering at the EPFL in 1991 and a PhD degree in 1997. He is one of the creators of the Khepera and directed the design of the S-bot, the e-puck, the marXbot and the Thymio mobile robots. Together, these robots are mentioned in more than 9000 research articles. In particular the Khepera robot is a milestone in the field of bio-inspired and evolutionary robotics.

<span class="mw-page-title-main">S-bot mobile robot</span>

The s-bot is a small (15 cm) differential wheeled mobile robot developed at the LIS at the EPFL in Lausanne, Switzerland between 2001 and 2004. Targeted to swarm robotics, a field of artificial intelligence, it was developed within the Swarm-bots project, a Future and Emerging Technologies project coordinated by Prof. Marco Dorigo. Built by a small team of engineers of the group of Prof. Dario Floreano and with the help of student projects, it is considered at the time of completion as one of the most complex and featured robots ever for its size. The s-bot was ranked on position 39 in the list of “The 50 Best Robots Ever” by the Wired magazine in 2006.

<span class="mw-page-title-main">Alice mobile robot</span>

The Alice is a very small "sugarcube" mobile robot (2x2x2cm) developed at the Autonomous Systems Lab (ASL) at the École Polytechnique Fédérale de Lausanne in Lausanne, Switzerland between 1998 and 2004. It has been part of the Institute of Robotics and Intelligent Systems (IRIS) at Swiss Federal Institute of Technology in Zürich since 2006.

<span class="mw-page-title-main">Cockroach</span> Insects of the order Blattodea

Cockroaches are insects belonging to the order Blattaria. About 30 cockroach species out of 4,600 are associated with human habitats. Some species are well-known as pests.

<span class="mw-page-title-main">Remote control animal</span>

Remote control animals are animals that are controlled remotely by humans. Some applications require electrodes to be implanted in the animal's nervous system connected to a receiver which is usually carried on the animal's back. The animals are controlled by the use of radio signals. The electrodes do not move the animal directly, as if controlling a robot; rather, they signal a direction or action desired by the human operator and then stimulate the animal's reward centres if the animal complies. These are sometimes called bio-robots or robo-animals. They can be considered to be cyborgs as they combine electronic devices with an organic life form and hence are sometimes also called cyborg-animals or cyborg-insects.

Nouvelle artificial intelligence (AI) is an approach to artificial intelligence pioneered in the 1980s by Rodney Brooks, who was then part of MIT artificial intelligence laboratory. Nouvelle AI differs from classical AI by aiming to produce robots with intelligence levels similar to insects. Researchers believe that intelligence can emerge organically from simple behaviors as these intelligences interacted with the "real world," instead of using the constructed worlds which symbolic AIs typically needed to have programmed into them.

<span class="mw-page-title-main">Webots</span> Open-source robot simulator

Webots is a free and open-source 3D robot simulator used in industry, education and research.

A hierarchical control system (HCS) is a form of control system in which a set of devices and governing software is arranged in a hierarchical tree. When the links in the tree are implemented by a computer network, then that hierarchical control system is also a form of networked control system.

<span class="mw-page-title-main">Cyborg</span> Being with both organic and biomechatronic body parts

A cyborg —a portmanteau of cybernetic and organism—is a being with both organic and biomechatronic body parts. The term was coined in 1960 by Manfred Clynes and Nathan S. Kline.

<span class="mw-page-title-main">Robotic vacuum cleaner</span> Autonomous vacuum floor cleaning system

A robotic vacuum cleaner, sometimes called a robovac or a roomba as a generic trademark, is an autonomous robotic vacuum cleaner which has a limited vacuum floor cleaning system combined with sensors and robotic drives with programmable controllers and cleaning routines. Early designs included manual operation via remote control and a "self-drive" mode which allowed the machine to clean autonomously.

<span class="mw-page-title-main">LAURON</span>

LAURON is a six-legged walking robot, which is being developed at the FZI Forschungszentrum Informatik in Germany. The mechanics and the movements of the robot are biologically-inspired, mimicking the stick insect Carausius Morosus. The development of the LAURON walking robot started with basic research in field of six-legged locomotion in the early 1990s and led to the first robot, called LAURON. In the year 1994, this robot was presented to public at the CeBIT in Hanover. This first LAURON generation was, in contrast to the current generation, controlled by an artificial neural network, hence the robot's German name: LAUfROboter Neuronal gesteuert. The current generation LARUON V was finished in 2013.

<span class="mw-page-title-main">Air-Cobot</span> French research and development project (2013–)

Air-Cobot (Aircraft Inspection enhanced by smaRt & Collaborative rOBOT) is a French research and development project of a wheeled collaborative mobile robot able to inspect aircraft during maintenance operations. This multi-partner project involves research laboratories and industry. Research around this prototype was developed in three domains: autonomous navigation, human-robot collaboration and nondestructive testing.

<span class="mw-page-title-main">Silvia Ferrari</span> American aerospace engineer

Silvia Ferrari is an American aerospace engineer. She is John Brancaccio Professor at the Sibley School of Mechanical and Aerospace Engineering at Cornell University and also the director of the Laboratory for Intelligent Systems and Control (LISC) at the same university.

References

  1. 1 2 3 Colot, Alexandre; Caprari, Gilles; Siegwart, Roland (2004). "InsBot: Design of an autonomous mini mobile robot able to interact with cockroaches". IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004. pp. 2418–2423 Vol.3. doi:10.1109/ROBOT.2004.1307423. hdl:20.500.11850/82534. ISBN   978-0-7803-8232-9. S2CID   12776519.
  2. 1 2 3 4 5 Hearn, Louisa (2006-05-12). "Robo-roach on the warpath". theage.com.au.
  3. 1 2 3 4 Caprari, Gilles; Colot, Alexandre; Siegwart, Roland; Halloy, Jose; Deneubourg, Jean-Louis (June 2005). "Animal and Robot Mixed Societies". IEEE Robotics & Automation Magazine. 12 (2): 58–65. doi:10.1109/MRA.2005.1458325. S2CID   13593913.
  4. Sempo, Gregory; Depickere, Stephanie; Ame, Jean-Marc; Detrain, Claire; Halloy, Jose; Deneubourg, Jean-Louis (2006). "Integration of an Autonomous Artificial Agent in an Insect Society: Experimental Validation". From Animals to Animats 9. Lecture Notes in Computer Science. Vol. 4095. pp. 703–712. doi:10.1007/11840541_58. ISBN   978-3-540-38608-7.