Integrity engineering

Last updated

Technical Integrity Engineering, also known as Asset Integrity, involves various engineering disciplines that focus on ensuring a product, process, or system meets its intended requirements when used. Applying these disciplines to reduce costs, maintain schedules, manage technical risks, and handle legal concerns during a project's entire life cycle ensures operational safety and efficiency in e.g. Oil and Gas, Power Generation, and Nuclear Power industries.

Contents

Integrity Engineering is a profession that uses science, math, economics, social insights, legal knowledge, and practical skills to ensure that products and systems are not only safe but also meet their legal and business requirements. Integrity Engineers perform tasks such as organizing inspections, managing integrity programs, and making sure plant facilities, including structures, pipelines, equipment, and piping systems, remain in good condition.

For Integrity Management, it's crucial that Integrity Engineers make independent, impartial decisions to ensure equipment is designed, maintained, operated, and decommissioned following the best industry practices. This independence helps maintain a high level of integrity and safety.

Scope

Integrity Engineers may be required to manage, develop, or conduct the following: [1]

Integrity Engineering encompasses the concept of:

This may be applied to management, machines, devices, systems, materials, and processes that safely realize improvements to the lives of assets.

The Integrity Engineer (IE) may also be involved with other asset life-cycle issues, such as the basis of design (Process design basis) through to recycling. The Front End Engineering Design stage (FEED) aids in the selection of vessels, piping, pipelines, and other equipment. At this FEED stage, the optimum material requirements, mitigation, and maintenance requirements for the intended period of operation become the basis for detailed engineering. It is the role of the IE to develop/validate the integrity management plan and implement the monitoring and management procedure for the intended period of operation. It may also be the responsibility of the integrity engineer to incorporate and manage any variation identified (metal loss, material degradation, cracking mechanisms, mitigation issues, i.e. Cathodic protection potentials, coating failures, etc.) during the monitoring regime.

It may be a generalist in nature and/or applied with specific prior knowledge denoted using a pre-nominal of Mechanical, Inspection, Asset, Well or Wellhead, Technical, Pipeline, Signal, Fabrication, or Commissioning depending upon the equipment or system under scrutiny.

Integrity Engineers construct and implement Integrity Management plans that detail the requirements of the item or asset under scrutiny and study any adverse effects from internal or external sources that damage / impair that item or system. These are used to build suitable inspection and condition monitoring forward strategies. The monitoring may include physical (pipes/vessels) and nonphysical systems (Management legal obligations). This diversity will depend upon the requirements of the task at hand.

Integrity Engineers also oversee or carry out Integrity Engineering Audit(s) to ensure legal compliance with company, national and international standards and ensure quality assurance within the process that meets good engineering standards.

See also

Related Research Articles

<span class="mw-page-title-main">Configuration management</span> Process for maintaining consistency of a product attributes with its design

Configuration management (CM) is a systems engineering process for establishing and maintaining consistency of a product's performance, functional, and physical attributes with its requirements, design, and operational information throughout its life. The CM process is widely used by military engineering organizations to manage changes throughout the system lifecycle of complex systems, such as weapon systems, military vehicles, and information systems. Outside the military, the CM process is also used with IT service management as defined by ITIL, and with other domain models in the civil engineering and other industrial engineering segments such as roads, bridges, canals, dams, and buildings.

<span class="mw-page-title-main">Maintenance</span> Maintaining a device in working condition

The technical meaning of maintenance involves functional checks, servicing, repairing or replacing of necessary devices, equipment, machinery, building infrastructure, and supporting utilities in industrial, business, and residential installations. Over time, this has come to include multiple wordings that describe various cost-effective practices to keep equipment operational; these activities occur either before or after a failure.

<span class="mw-page-title-main">Inspection</span> Organized examination or formal evaluation exercise

An inspection is, most generally, an organized examination or formal evaluation exercise. In engineering activities inspection involves the measurements, tests, and gauges applied to certain characteristics in regard to an object or activity. The results are usually compared to specified requirements and standards for determining whether the item or activity is in line with these targets, often with a Standard Inspection Procedure in place to ensure consistent checking. Inspections are usually non-destructive.

Integrated logistics support (ILS) is a technology in the system engineering to lower a product life cycle cost and decrease demand for logistics by the maintenance system optimization to ease the product support. Although originally developed for military purposes, it is also widely used in commercial customer service organisations.

Reliability-centered maintenance (RCM) is a concept of maintenance planning to ensure that systems continue to do what their users require in their present operating context. Successful implementation of RCM will lead to increase in cost effectiveness, reliability, machine uptime, and a greater understanding of the level of risk that the organization is managing.

Risk-based inspection (RBI) is an optimal maintenance business process used to examine equipment such as pressure vessels, quick-opening closure - doors, heat exchangers, and piping in industrial plants. RBI is a decision-making methodology for optimizing inspection plans. The RBI concept lies in that the risk of failure can be assessed in relation to a level that is acceptable, and inspection and repair used to ensure that the level of risk is below that acceptance limit. It examines the health, safety and environment and business risk of ‘active’ and ‘potential’ damage mechanisms to assess and rank failure probability and consequence. This ranking is used to optimize inspection intervals based on site-acceptable risk levels and operating limits, while mitigating risks as appropriate. RBI analysis can be qualitative, quantitative or semi-quantitative in nature.

Asset management is a systematic approach to the governance and realization of all value for which a group or entity is responsible. It may apply both to tangible assets and to intangible assets. Asset management is a systematic process of developing, operating, maintaining, upgrading, and disposing of assets in the most cost-effective manner.

Security controls are safeguards or countermeasures to avoid, detect, counteract, or minimize security risks to physical property, information, computer systems, or other assets. In the field of information security, such controls protect the confidentiality, integrity and availability of information.

Information security management (ISM) defines and manages controls that an organization needs to implement to ensure that it is sensibly protecting the confidentiality, availability, and integrity of assets from threats and vulnerabilities. The core of ISM includes information risk management, a process that involves the assessment of the risks an organization must deal with in the management and protection of assets, as well as the dissemination of the risks to all appropriate stakeholders. This requires proper asset identification and valuation steps, including evaluating the value of confidentiality, integrity, availability, and replacement of assets. As part of information security management, an organization may implement an information security management system and other best practices found in the ISO/IEC 27001, ISO/IEC 27002, and ISO/IEC 27035 standards on information security.

Medical equipment management is a term for the professionals who manage operations, analyze and improve utilization and safety, and support servicing healthcare technology. These healthcare technology managers are, much like other healthcare professionals referred to by various specialty or organizational hierarchy names.

Corrosion engineering is an engineering specialty that applies scientific, technical, engineering skills, and knowledge of natural laws and physical resources to design and implement materials, structures, devices, systems, and procedures to manage corrosion. From a holistic perspective, corrosion is the phenomenon of metals returning to the state they are found in nature. The driving force that causes metals to corrode is a consequence of their temporary existence in metallic form. To produce metals starting from naturally occurring minerals and ores, it is necessary to provide a certain amount of energy, e.g. Iron ore in a blast furnace. It is therefore thermodynamically inevitable that these metals when exposed to various environments would revert to their state found in nature. Corrosion and corrosion engineering thus involves a study of chemical kinetics, thermodynamics, electrochemistry and materials science.

An Integrity Engineering Audit is carried out within an Integrity engineering function so as to ensure compliance with international, national and company specific standards and regulations.

<span class="mw-page-title-main">Sierra Army Depot</span> Airport in Sierra Army Depot, California

Sierra Army Depot (SIAD) is a United States Army post and military equipment storage facility located near the unincorporated community of Herlong, California. It was built in 1942 as one of several ammunition storage facilities located far enough inland to be safe from Japanese attack, yet close enough to western military posts and ports to facilitate shipment of supplies. The site also met the requirement that the depot be in a dry and isolated area.

Integrity Management Plan is a documented and systematic approach to ensure the long-term integrity of an asset or assets.

Asset Integrity Management Systems (AIMS) outline the ability of an asset to perform its required function effectively and efficiently whilst protecting health, safety and the environment and the means of ensuring that the people, systems, processes, and resources that deliver integrity are in place, in use and will perform when required over the whole life-cycle of the asset. The technical aspects of AIMS are illustrated in Figure 1. Originally developed in the UK, Asset Integrity Management was the result of a collaboration between the HSE and leading oil and gas operators resulting in a series of reports and workshops, the outcome being a group of documents called Key Programmes, currently publicly available.

<span class="mw-page-title-main">Infrastructure asset management</span> Maintenance of public infrastructure assets

Infrastructure asset management is the integrated, multidisciplinary set of strategies in sustaining public infrastructure assets such as water treatment facilities, sewer lines, roads, utility grids, bridges, and railways. Generally, the process focuses on the later stages of a facility's life cycle, specifically maintenance, rehabilitation, and replacement. Asset management specifically uses software tools to organize and implement these strategies with the fundamental goal to preserve and extend the service life of long-term infrastructure assets which are vital underlying components in maintaining the quality of life in society and efficiency in the economy. In the 21st century, climate change adaptation has become an important part of infrastructure asset management competence.

<span class="mw-page-title-main">IT risk management</span>

IT risk management is the application of risk management methods to information technology in order to manage IT risk, i.e.:

Piping corrosion circuit or Corrosion loop / Piping Circuitization and Corrosion Modelling, is carried out as part of either a Risk Based Inspection analysis (RBI) or Materials Operating Envelope analysis (MOE). It is the systematization of the piping components versus failure modes analysis into materials operating envelope. It groups piping materials / chemical make-up into systems / sub systems and assigns corrosion mechanisms. These are then monitored over the operating lifetime of the facility. This analysis is performed on circuit inspection results to determine and optimize circuit corrosion rates and measured thickness/dates for circuit components. Corrosion Circuits are utilized in the Integrity Management Plan (IMP) which forms a part of the overall Asset integrity management system and is an integral part of any RBI analysis. Many times a "system" will be a broad overview of the facilities process flow, broken by stream constituents, while a circuit level analysis breaks systems into smaller "circuits" that group common metallurgies, equal temperatures and pressures, and expected damage mechanisms.

Corrosion loop(s) are systematized analysis "loops" used during Risk-based inspection analysis. Both terms “RBI Corrosion loops” or “RBI corrosion circuits” are generic terms used to indicate the systematization of piping systems into usable and understandable parts associated with corrosion. Systematized piping loops or circuits are systems used in Risk Based Inspection analysis to assess the likelihood and consequence of failure. Other systematization may also prove useful, such as, i.e. inspection, consequence, materials of construction and chemistry. The system (or sub systems) maybe used to identify, pressure / temperature, subsequent failure mechanism and possible failure rate. They may be based upon Construction drawings, Process Flow diagrams or Piping & Instrument diagrams as required. Each loop or circuit maybe identified using a unique code, with description about; process, material & degradation mode, material, cladding, C.A, specs. See system model comes under the general heading of system analysis the terms analysis and synthesis come from Greek where they mean respectively "to take apart" and "to put together". See also systems theory: Note the exact definition of the systematized risk analysis " loop" is left to the reader and their requirements of the system analysis required, however to ensure consistency and that the expected results is produced, this should be defined before they are constructed. It is suggested that a “true” corrosion loop should be a grouping were the degradation mechanism is "likely" to be the same i.e.

Robotic non-destructive testing (NDT) is a method of inspection used to assess the structural integrity of petroleum, natural gas, and water installations. Crawler-based robotic tools are commonly used for in-line inspection (ILI) applications in pipelines that cannot be inspected using traditional intelligent pigging tools.

References

  1. Madkour, Professor Dr Loutfy H. INDUSTRIAL CORROSION AND CORROSION CONTROL TECHNOLOGY. pp. 449–555.
  1. Integrity Of Engineering Components Journal Sadhana Publisher Springer India, in co-publication with Indian Academy of Sciences ISSN 0256-2499 (Print) 0973-7677 (Online) Issue Volume 20, Number 1 / February 1995
  2. NASA and Engineering Integrity Michael D. Griffin Administrator National Aeronautics and Space Administration Wernher von Braun Memorial Symposium American Astronautical Society 21 October 2008
  3. Implementation of Asset Integrity Management System Muhammad Abduh PetroEnergy Magazine April – May 2008 Edition http://abduh137.wordpress.com/2008/05/04/aims/
  4. API RECOMMENDED PRACTICE 584 Integrity Operating Windows FIRST EDITION, MAY 2014
  5. Pressure Equipment Integrity Incident Investigation API RECOMMENDED PRACTICE 585 FIRST EDITION, APRIL 2014
  6. Process Integrity in Engineering and Manufacturing [Kindle Edition] Jim Williams (Author) Published on Amazon.com

Further reading