Intelligent vehicle technologies

Last updated

Intelligent vehicle technologies comprise electronic, electromechanical, and electromagnetic devices - usually silicon micromachined components operating in conjunction with computer-controlled devices and radio transceivers to provide precision repeatability functions (such as in robotics artificial intelligence systems) emergency warning validation performance reconstruction.

Contents

Applications

Intelligent vehicle technologies commonly apply to car safety systems and self-contained autonomous electromechanical sensors generating warnings that can be transmitted within a specified targeted area of interest, say within 100 meters of the transceiver. In ground applications, intelligent vehicle technologies are utilized for safety and commercial communications between vehicles or between a vehicle and a sensor along the road.

Intelligent vehicle technologies provide instantaneous on the road information to the motorist who wishes to map a route to a specific destination and expects the system to assist in determining the best course of travel. The information provided by the in-vehicle system updates approximately every minute (depending on the speed of the vehicle) all the transmitter beacon information self-recorded by the vehicle while traveling on the road. That is, all vehicles traveling on the highway update such information to the local mile markers via DSRC telematics. The mile markers in turn communicate with the regional monitoring station and upload data so as to populate statistical bar graph trend of traffic flow progression. The information further made available for access to the date collected by the system established data exchange format through standard Internet protocol IP address communications links.

Usage-based insurance is based on telematics technology.

Total system intelligence

Total system intelligence means accountability of every IVT equipped vehicle traveling on the road. Vehicles can use gathered information from the road to determine lane specific vehicle usage and scenarios such as lane closures (in-vehicle notification warning), construction zones, emergency situations, etc.

Information transmission and reception

Intelligent vehicle technologies target transmission capable beacons provide for information signal data that are employed infrastructure to vehicle and vehicle to vehicle for exclusive precision remote communications to the specific one vehicle traveling in a given lane on the highway, for example – or a convoy of vehicles in a given travel lane, or multiple vehicles traveling in all affected lanes. All lanes are beacon tagged so as the vehicle travels down the road the ground beacon maintains communication with the vehicle for that particular lane – so it is therefore possible for example, for law enforcement to direct and provide for specific in-vehicle aural and/or visual information to a target vehicle traveling in a given lane (or multiple vehicle in multiple lanes as desired).

Vehicles traveling in the vicinity of an accident scenario, for example, are simultaneously queried by the in-vehicle police intelligent beacon system computer which repeatedly updates and processes all dynamic passing vehicle data received, identifying and classifying all passing vehicles in real-time – for example, an aural visual command instruction is sent to all the in-vehicle emergency warning beacon system computers as a reminder that no rubbernecking, for example, or viewing of the accident is permitted and vehicles are instructed to safely maintain a given speed limit. Ease of managing, operating, and reducing traffic congestion of the transportation system is therefore achieved.

Examples

For example: An official, noting through IVT that a car's registration has expired, could use telematics to direct the car's driver to pull the car over.

A combination of in-vehicle beacon transceivers and RFID transmitters (surface installed such as reflector tags, or embedded onto the road) would detect a vehicle's position, serial number, make, model, color, unit identification, and orientation. Real-time data would be constantly updated, self-recorded, then uploaded by the vehicle to the telematics mile marker by the vehicle’s transceiver to enable intra-vehicle control communications.

Related Research Articles

In radio communication, a transceiver is a device that is able to both transmit and receive information through a transmission medium. It is a combination of a transmitter and a receiver, hence the name transceiver. Transmission is usually accomplished via radio waves, but communications satellites, wired connections, and optical fiber systems can also be used.

Intelligent transportation system advanced application

An intelligent transportation system (ITS) is an advanced application which aims to provide innovative services relating to different modes of transport and traffic management and enable users to be better informed and make safer, more coordinated, and 'smarter' use of transport networks.

Automatic vehicle location is a means for automatically determining and transmitting the geographic location of a vehicle. This vehicle location data, from one or more vehicles, may then be collected by a vehicle tracking system to manage an overview of vehicle travel. As of 2017, GPS technology has reached the point of having the transmitting device be smaller than the size of a human thumb, able to run 6 months or more between battery charges, easy to communicate with smartphones — all for less than $20 USD.

Computer-aided dispatch A method of dispatching vehicle-based services assisted by computer

Computer-aided dispatch (CAD), also called computer-assisted dispatch, is a method of dispatching taxicabs, couriers, field service technicians, mass transit vehicles or emergency services assisted by computer. It can either be used to send messages to the dispatchee via a mobile data terminal (MDT) and/or used to store and retrieve data. A dispatcher may announce the call details to field units over a two-way radio. Some systems communicate using a two-way radio system's selective calling features. CAD systems may send text messages with call-for-service details to alphanumeric pagers or wireless telephony text services like SMS. The central idea is that persons in a dispatch center are able to easily view and understand the status of all units being dispatched. CAD provides displays and tools so that the dispatcher has an opportunity to handle calls-for-service as efficiently as possible.

Telematics integrated use of telecommunications and informatics for application in vehicles

Telematics is an interdisciplinary field that encompasses telecommunications, vehicular technologies, for instance, road transport, road safety, electrical engineering, and computer science. Telematics can involve any of the following:

Advanced driver-assistance systems electronic systems that help the vehicle driver while driving or during parking

Advanced driver-assistance systems (ADAS), are electronic systems that help the vehicle driver while driving or during parking. When designed with a safe human-machine interface, they are intended to increase car safety and more generally road safety. ADAS systems use electronic technology such as microcontroller units (MCU), electronic control units (ECU), and power semiconductor devices, and software technology components such as an Electronic Horizon.

Dedicated short-range communications (DSRC) are one-way or two-way short-range to medium-range wireless communication channels specifically designed for automotive use and a corresponding set of protocols and standards.

Automotive lighting lighting system of a motor vehicle

The lighting system of a motor vehicle consists of lighting and signalling devices mounted or integrated to the front, rear, sides, and in some cases the top of a motor vehicle. This lights the roadway for the driver and increases the visibility of the vehicle, allowing other drivers and pedestrians to see a vehicle's presence, position, size, direction of travel, and the driver's intentions regarding direction and speed of travel. Emergency vehicles usually carry distinctive lighting equipment to warn drivers and indicate priority of movement in traffic.

Usage-based insurance (UBI) also known as pay as you drive (PAYD) and pay how you drive (PHYD) and mile-based auto insurance is a type of vehicle insurance whereby the costs are dependent upon type of vehicle used, measured against time, distance, behavior and place.

Fleet management is the management of:

TomTom Dutch manufacturer of automotive navigation systems

TomTom N.V. is a Dutch multinational developer & creator of location technology and consumer electronics. Founded in 1991 and headquartered in Amsterdam, TomTom released its first generation of satellite navigation devices to market in 2004. As of 2019 the company has over 4500 employees worldwide and operations in 29 countries throughout Europe, Asia-Pacific, and the Americas.

Vehicular ad hoc networks (VANETs) are created by applying the principles of mobile ad hoc networks (MANETs) – the spontaneous creation of a wireless network of mobile devices – to the domain of vehicles. VANETs were first mentioned and introduced in 2001 under "car-to-car ad-hoc mobile communication and networking" applications, where networks can be formed and information can be relayed among cars. It was shown that vehicle-to-vehicle and vehicle-to-roadside communications architectures will co-exist in VANETs to provide road safety, navigation, and other roadside services. VANETs are a key part of the intelligent transportation systems (ITS) framework. Sometimes, VANETs are referred as Intelligent Transportation Networks

Vehicle infrastructure integration (VII) is an initiative fostering research and applications development for a series of technologies directly linking road vehicles to their physical surroundings, first and foremost in order to improve road safety. The technology draws on several disciplines, including transport engineering, electrical engineering, automotive engineering, and computer science. VII specifically covers road transport although similar technologies are in place or under development for other modes of transport. Planes, for example, use ground-based beacons for automated guidance, allowing the autopilot to fly the plane without human intervention. In highway engineering, improving the safety of a roadway can enhance overall efficiency. VII targets improvements in both safety and efficiency.

Road signs in Norway are regulated by the Norwegian Public Roads Administration, Statens vegvesen.

Vehicle safety technology

Vehicle Safety Technology (VST) in the automotive industry refers to the special technology developed to ensure the safety and security of automobiles and their passengers. The term encompasses a broad umbrella of projects and devices within the automotive world. Notable examples of VST include geo-fencing capabilities, remote speed sensing, theft deterrence, damage mitigation, vehicle-to-vehicle communication, and car-to-computer communication devices which use GPS tracking.

Intelligent speed adaptation (ISA), also known as alerting, and intelligent authority, is any system that ensures that vehicle speed does not exceed a safe or legally enforced speed. In case of potential speeding, a human driver can be alerted, or the speed reduced automatically.

Collision avoidance system automobile safety system designed to avoid collisions or reduce the severity of a collision

A collision avoidance system (CAS), also known as a pre-crash system, forward collision warning system, or collision mitigation system, is an automobile safety system designed to prevent or reduce the severity of a collision. In its basic form, a forward collision warning system monitors a vehicle's speed, the speed of a vehicle in front of it, and the distance between the vehicles, to provide a warning to the driver if the vehicles get too close so as to avoid a crash. Various technologies and sensors that are used include radar (all-weather) and sometimes laser (LIDAR) and camera to detect an imminent crash. GPS sensors can detect fixed dangers such as approaching stop signs through a location database. Pedestrian detection can also be a feature of these types of systems.

Internavi

Internavi is a vehicle telematics service offered by the Honda Motor Company to drivers in Japan. In the United States, the service is known as HondaLink, or sometimes MyLink. It provides mobile connectivity for on-demand traffic information services and internet provided maps displayed inside selected Honda vehicles. The service began August 1997 and was first offered in the 1998 Honda Accord and the Honda Torneo sold only in Japan starting July 1998. The service received a revision to services offered October 2002, adding traffic information delivery capabilities for subscribers to the Internavi Premium Club, and was optional on most Honda vehicles sold in Japan. VICS was integrated into the service starting September 2003. Membership in the service has steadily grown to exceed 5 million subscribers as of March 2007.

A connected car is a car that is one that can communicate bidirectionally with other systems outside of the car (LAN). This allows the car to share internet access, and hence data, with other devices both inside and outside the vehicle. For safety-critical applications, it is anticipated that cars will also be connected using dedicated short-range communications (DSRC) radios, operating in the FCC-granted 5.9 GHz band with very low latency.

Airbiquity

Airbiquity Inc. is a business-to-business (B2B) software development and engineering company operating in the automotive telematics industry. Airbiquity's business model is to develop, deploy, and support the ongoing management of connected car programs for automotive industry customers using a software-as-a-service (SaaS) business model, and its Choreo cloud-based connected car service delivery platform.

References