In cosmology, intensity mapping is an observational technique for surveying the large-scale structure of the universe by using the integrated radio emission from unresolved gas clouds.
In its most common variant, 21 cm intensity mapping, the 21cm emission line of neutral hydrogen is used to trace the gas. The hydrogen follows fluctuations in the underlying cosmic density field, with regions of higher density giving rise to a higher intensity of emission. Intensity fluctuations can therefore be used to reconstruct the power spectrum of matter fluctuations. The frequency of the emission line is redshifted by the expansion of the Universe, so by using radio receivers that cover a wide frequency band, one can detect this signal as a function of redshift, and thus cosmic time. This is similar in principle to a galaxy redshift survey, with the important distinction that galaxies need to be individually detected and measured, making intensity mapping a considerably faster method. [1]
Intensity mapping has been proposed as a way of measuring the cosmic matter density field in several different regimes.
Between the times of recombination and reionization, the baryonic content of the Universe – mostly hydrogen – existed in a neutral phase. Detecting the 21 cm emission from this time, all the way through to the end of reionization, has been proposed as a powerful way of studying early structure formation. [9] This period of the Universe's history corresponds to redshifts of to , implying a frequency range for intensity mapping experiments of 50 – 200 MHz.
At late times, after the Universe has reionized, most of the remaining neutral hydrogen is stored in dense gas clouds called damped Lyman-alpha systems, where it is protected from ionizing UV radiation. These are predominantly hosted in galaxies, so the neutral hydrogen signal is effectively a tracer of the galaxy distribution.
As with galaxy redshift surveys, intensity mapping observations can be used to measure the geometry and expansion rate of the Universe (and therefore the properties of dark energy [1] ) by using the baryon acoustic oscillation feature in the matter power spectrum as a standard ruler. The growth rate of structure, useful for testing modifications to general relativity, [10] can also be measured using redshift space distortions. Both of these features are found at large scales of tens to hundreds of megaparsecs, which is why low angular resolution (unresolved) maps of neutral hydrogen are sufficient to detect them. This should be compared with the resolution of a redshift survey, which must detect individual galaxies that are typically only tens of kiloparsecs across.
Because intensity mapping surveys can be carried out much faster than conventional optical redshift surveys, it is possible to map-out significantly larger volumes of the Universe. As such, intensity mapping has been proposed as a way of measuring phenomena on extremely large scales, including primordial non-Gaussianity from inflation [11] and general relativistic corrections to the matter correlation function. [12]
In principle, any emission line can be used to make intensity maps if it can be detected. Other emission lines that have been proposed as cosmological tracers include:
The following telescopes have either hosted intensity mapping surveys, or plan to carry them out in future.
The Goddard Space Flight Center also host a list of intensity mapping experiments.
The cosmic microwave background, or relic radiation, is microwave radiation that fills all space in the observable universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.
A quasar is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.
The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe, was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang. Headed by Professor Charles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University. The WMAP spacecraft was launched on 30 June 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002), who had been a member of the mission's science team. After nine years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by European Space Agency (ESA) in 2009.
In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".
The hydrogen line, 21 centimeter line, or H I line is a spectral line that is created by a change in the energy state of solitary, electrically neutral hydrogen atoms. It is produced by a spin-flip transition, which means the direction of the electron's spin is reversed relative to the spin of the proton. This is a quantum state change between the two hyperfine levels of the hydrogen 1 s ground state. The electromagnetic radiation producing this line has a frequency of 1420.405751768(2) MHz (1.42 GHz), which is equivalent to a wavelength of 21.106114054160(30) cm in a vacuum. According to the Planck–Einstein relation E = hν, the photon emitted by this transition has an energy of 5.8743261841116(81) μeV [9.411708152678(13)×10−25 J]. The constant of proportionality, h, is known as the Planck constant.
The Giant Metrewave Radio Telescope (GMRT), located near Narayangaon, Pune in India, is an array of thirty fully steerable parabolic radio telescopes of 45 metre diameter, observing at metre wavelengths. It is the largest and most sensitive radio telescope array in the world at low frequencies. It is operated by the National Centre for Radio Astrophysics (NCRA), a part of the Tata Institute of Fundamental Research, Mumbai. It was conceived and built under the direction of Govind Swarup during 1984 to 1996. It is an interferometric array with baselines of up to 25 kilometres (16 mi). It was recently upgraded with new receivers, after which it is also known as the upgraded Giant Metrewave Radio Telescope (uGMRT).
A Lyman-alpha emitter (LAE) is a type of distant galaxy that emits Lyman-alpha radiation from neutral hydrogen.
The chronology of the universe describes the history and future of the universe according to Big Bang cosmology.
The Yuan-Tseh Lee Array for Microwave Background Anisotropy, also known as the Array for Microwave Background Anisotropy (AMiBA), is a radio telescope designed to observe the cosmic microwave background and the Sunyaev-Zel'dovich effect in clusters of galaxies.
A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of luminous blue compact galaxy that is undergoing very high rates of star formation. Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).
UDFy-38135539 is the Hubble Ultra Deep Field (UDF) identifier for a galaxy which was calculated as of October 2010 to have a light travel time of 13.1 billion years with a present proper distance of around 30 billion light-years.
Wouthuysen–Field coupling, or the Wouthuysen–Field effect, is a mechanism that couples the excitation temperature, also called the spin temperature, of neutral hydrogen to Lyman-alpha radiation. This coupling plays a role in producing a difference in the temperature of neutral hydrogen and the cosmic microwave background at the end of the Dark Ages and the beginning of the epoch of reionization. It is named for Siegfried Adolf Wouthuysen and George B. Field.
The Dark Ages Radio Explorer (DARE) is a proposed NASA mission aimed at detecting redshifted line emissions from the earliest neutral hydrogen atoms, formed post-Cosmic Dawn. Emissions from these neutral hydrogen atoms, characterized by a rest wavelength of 21 cm and a frequency of 1420 MHz, offer insights into the formation of the universe's first stars and the epoch succeeding the cosmic Dark Ages. The intended orbiter aims to investigate the universe's state from approximately 80 million years to 420 million years post-Big Bang by capturing the line emissions at their redshifted frequencies originating from that period. Data collected by this mission is expected to shed light on the genesis of the first stars, the rapid growth of the initial black holes, and the universe’s reionization process. Moreover, it would facilitate the testing of computational galaxy formation models. Furthermore, the mission could advance research into dark matter decay and inform the development of lunar surface telescopes, enhancing the exploration of exoplanets around proximate stars.
Tololo 1247-232 is a small galaxy at a distance of 652 million light-years. It is situated in the southern equatorial constellation of Hydra. Visually, Tol 1247 appears to be an irregular or possibly a barred spiral galaxy. Tol 1247 is named after the surveys that were carried at the Cerro Tololo Inter-American Observatory (CTIO), the first of which was in 1976. It is one of nine galaxies in the local universe known to emit Lyman continuum photons.
Haro 11 (H11) is a small galaxy at a distance of 300,000,000 light-years (redshift z=0.020598). It is situated in the southern constellation of Sculptor. Visually, it appears to be an irregular galaxy, as the ESO image to the right shows. H11 is named after Guillermo Haro, a Mexican astronomer who first included it in a study published in 1956 about blue galaxies. H11 is a starburst galaxy that has 'super star clusters' within it and is one of nine galaxies in the local universe known to emit Lyman continuum photons (LyC).
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is an interferometric radio telescope at the Dominion Radio Astrophysical Observatory in British Columbia, Canada which consists of four antennas consisting of 100 x 20 metre cylindrical parabolic reflectors with 1024 dual-polarization radio receivers suspended on a support above them. The antenna receives radio waves from hydrogen in space at frequencies in the 400–800 MHz range. The telescope's low-noise amplifiers are built with components adapted from the cellphone industry and its data are processed using a custom-built FPGA electronic system and 1000-processor high-performance GPGPU cluster. The telescope has no moving parts and observes half of the sky each day as the Earth turns.
EGSY8p7 (EGSY-2008532660) is a distant galaxy in the constellation of Boötes, with a spectroscopic redshift of z = 8.68, a light travel distance of 13.2 billion light-years from Earth. Therefore, at an age of 13.2 billion years, it is observed as it existed 570 million years after the Big Bang, which occurred 13.8 billion years ago, using the W. M. Keck Observatory. In July 2015, EGSY8p7 was announced as the oldest and most-distant known object, surpassing the previous record holder, EGS-zs8-1, which was determined in May 2015 as the oldest and most distant object. In March 2016, Pascal Oesch, one of the discoverers of EGSY8p7, announced the discovery of GN-z11, an older and more distant galaxy.
The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope dedicated to observing large scale structure during and prior to the epoch of reionization. HERA is a Square Kilometre Array (SKA) precursor instrument, intended to observe the early universe and to assist in the design of the full SKA. Along with MeerKAT, also in South Africa, and two radio telescopes in Western Australia, the Australian SKA Pathfinder (ASKAP) and the Murchison Widefield Array (MWA), the HERA is one of four precursors to the final SKA. It is located in the Meerkat National Park.
Sangeeta Malhotra is an astrophysicist who studies galaxies, their contents, and their effects on the universe around them. The objects she studies range from our own Milky Way galaxy to some of the earliest and most distant known galaxies in the epoch of cosmic dawn.
{{cite journal}}
: Cite journal requires |journal=
(help)