Intermuscular coordination

Last updated

Intermuscular coordination describes the coordination within different muscles and groups of muscles. These are used for sceletoral movement, stabilisation of joints, as well as stabilisation of body positioning. [1]

Contents

central nervous system is controlling positioning of joints via anticipatory and correcting adaptions of posture, that work against occurring intersegmental forces. [2]

The specific role and hierarchy of certain muscles and their meaning for certain movements is further differentiated within literature. [3] [4]

Usage

Joints are stabilised by interacting muscles, so called synergist muscle. Different synergists feature partial similar functions. Therefore a certain movement can be formed out of different combinations and participations of muscles acting on a certain joint.

Even muscles not being in a direct connection towards a certain joint can fulfill a stabilising function for that very joint. For a clear specification of any muscles function it is necessary to measure precisely muscular function of not directly involved muscles within certain movements via elktromyografia. [5]

Complex movement structures are coordinated within the cerebellum via somatosensoric feedback via psychomotoric learning.

Examples

Related Research Articles

The muscular system is an organ system consisting of skeletal, smooth, and cardiac muscle. It permits movement of the body, maintains posture, and circulates blood throughout the body. The muscular systems in vertebrates are controlled through the nervous system although some muscles can be completely autonomous. Together with the skeletal system in the human, it forms the musculoskeletal system, which is responsible for the movement of the body.

<span class="mw-page-title-main">Schism of the Russian Church</span> 1650s–60s Russian Orthodox schism creating the Old Believers

The Schism of the Russian Church, also known as Raskol, was the splitting of the Russian Orthodox Church into an official church and the Old Believers movement in the mid-17th century. It was triggered by the reforms of Patriarch Nikon in 1653, which aimed to establish uniformity between Greek and Russian church practices.

<span class="mw-page-title-main">Motor cortex</span> Region of the cerebral cortex

The motor cortex is the region of the cerebral cortex involved in the planning, control, and execution of voluntary movements. The motor cortex is an area of the frontal lobe located in the posterior precentral gyrus immediately anterior to the central sulcus.

<span class="mw-page-title-main">Hyperkinesia</span> Excessive movements due to basal ganglia dysfunction

Hyperkinesia refers to an increase in muscular activity that can result in excessive abnormal movements, excessive normal movements, or a combination of both. Hyperkinesia is a state of excessive restlessness which is featured in a large variety of disorders that affect the ability to control motor movement, such as Huntington's disease. It is the opposite of hypokinesia, which refers to decreased bodily movement, as commonly manifested in Parkinson's disease.

<span class="mw-page-title-main">Posterior cricoarytenoid muscle</span> Muscle of the larynx

The posterior cricoarytenoid muscle is a intrinsic muscle of the larynx. It arises from the cricoid cartilage; it inserts onto the arytenoid cartilage of the same side. It is innervated by the recurrent laryngeal nerve. Each acts to open the vocal folds by pulling the vocal fold of the same side laterally. It participates in the production of sounds.

<span class="mw-page-title-main">Rectus capitis posterior minor muscle</span> Tendon

The rectus capitis posterior minor is a muscle in the upper back part of the neck. It is one of the suboccipital muscles. Its inferior attachment is at the posterior arch of atlas; its superior attachment is onto the occipital bone at and below the inferior nuchal line. The muscle is innervated by the suboccipital nerve. The muscle acts as a weak extensor of the head.

In physiology, motor coordination is the orchestrated movement of multiple body parts as required to accomplish intended actions, like walking. This coordination is achieved by adjusting kinematic and kinetic parameters associated with each body part involved in the intended movement. The modifications of these parameters typically relies on sensory feedback from one or more sensory modalities, such as proprioception and vision.

<span class="mw-page-title-main">Premotor cortex</span>

The premotor cortex is an area of the motor cortex lying within the frontal lobe of the brain just anterior to the primary motor cortex. It occupies part of Brodmann's area 6. It has been studied mainly in primates, including monkeys and humans. The functions of the premotor cortex are diverse and not fully understood. It projects directly to the spinal cord and therefore may play a role in the direct control of behavior, with a relative emphasis on the trunk muscles of the body. It may also play a role in planning movement, in the spatial guidance of movement, in the sensory guidance of movement, in understanding the actions of others, and in using abstract rules to perform specific tasks. Different subregions of the premotor cortex have different properties and presumably emphasize different functions. Nerve signals generated in the premotor cortex cause much more complex patterns of movement than the discrete patterns generated in the primary motor cortex.

<span class="mw-page-title-main">Backward running</span>

Backward running, also known as backwards running, running backwards, reverse running, retro running, or retro locomotion is the act of running in reverse, so that one travels in the direction one's back is facing rather than one's front. It is classed as a retro movement, the reverse of a normal movement.

<span class="mw-page-title-main">Supplementary motor area</span> Midline region in front of the motor cortex of the brain

The supplementary motor area (SMA) is a part of the motor cortex of primates that contributes to the control of movement. It is located on the midline surface of the hemisphere just in front of the primary motor cortex leg representation. In monkeys the SMA contains a rough map of the body. In humans the body map is not apparent. Neurons in the SMA project directly to the spinal cord and may play a role in the direct control of movement. Possible functions attributed to the SMA include the postural stabilization of the body, the coordination of both sides of the body such as during bimanual action, the control of movements that are internally generated rather than triggered by sensory events, and the control of sequences of movements. All of these proposed functions remain hypotheses. The precise role or roles of the SMA is not yet known.

<span class="mw-page-title-main">Muscle coactivation</span> Contraction to provide joint stability

Muscle coactivation occurs when agonist and antagonist muscles surrounding a joint contract simultaneously to provide joint stability, and is suggested to depend crucially on supraspinal processes involved in the control of movement. It is also known as muscle cocontraction, since two muscle groups are contracting at the same time. It is able to be measured using electromyography (EMG) from the contractions that occur. The general mechanism of it is still widely unknown. It is believed to be important in joint stabilization, as well as general motor control.

Occlusion, in a dental context, means simply the contact between teeth. More technically, it is the relationship between the maxillary (upper) and mandibular (lower) teeth when they approach each other, as occurs during chewing or at rest.

Active sitting is the practice of enabling or encouraging individuals to engage in physical activity while seated. It is also commonly known as dynamic sitting. The underlying notion highlights the advantages of incorporating flexibility and movement while sitting, as it can positively impact the human body and allow the completion of certain tasks that require sitting. "Active sitting, consisting of modified chairs or stability balls, allows the body to stay dynamic while seated." One of the earliest forms of active sitting is the common rocking chair which allows forward and backward swaying motion.

<span class="mw-page-title-main">Primary motor cortex</span> Brain region

The primary motor cortex is a brain region that in humans is located in the dorsal portion of the frontal lobe. It is the primary region of the motor system and works in association with other motor areas including premotor cortex, the supplementary motor area, posterior parietal cortex, and several subcortical brain regions, to plan and execute voluntary movements. Primary motor cortex is defined anatomically as the region of cortex that contains large neurons known as Betz cells, which, along with other cortical neurons, send long axons down the spinal cord to synapse onto the interneuron circuitry of the spinal cord and also directly onto the alpha motor neurons in the spinal cord which connect to the muscles.

<span class="mw-page-title-main">Orthotics</span> Medical specialty that focuses on the building and designing of artificial legs

Orthotics is a medical specialty that focuses on the design and application of orthoses, sometimes known as braces or calipers. An orthosis is "an externally applied device used to influence the structural and functional characteristics of the neuromuscular and skeletal systems." Orthotists are professionals who specialize in designing these braces.

Fine motor skill is the coordination of small muscles in movement with the eyes, hands and fingers. The complex levels of manual dexterity that humans exhibit can be related to the nervous system. Fine motor skills aid in the growth of intelligence and develop continuously throughout the stages of human development.

In neuroscience and motor control, the degrees of freedom problem or motor equivalence problem states that there are multiple ways for humans or animals to perform a movement in order to achieve the same goal. In other words, under normal circumstances, no simple one-to-one correspondence exists between a motor problem and a motor solution to the problem. The motor equivalence problem was first formulated by the Russian neurophysiologist Nikolai Bernstein: "It is clear that the basic difficulties for co-ordination consist precisely in the extreme abundance of degrees of freedom, with which the [nervous] centre is not at first in a position to deal."

<span class="mw-page-title-main">Neuromechanics</span> Interdisciplinary field

Neuromechanics is an interdisciplinary field that combines biomechanics and neuroscience to understand how the nervous system interacts with the skeletal and muscular systems to enable animals to move. In a motor task, like reaching for an object, neural commands are sent to motor neurons to activate a set of muscles, called muscle synergies. Given which muscles are activated and how they are connected to the skeleton, there will be a corresponding and specific movement of the body. In addition to participating in reflexes, neuromechanical process may also be shaped through motor adaptation and learning.

<span class="mw-page-title-main">Anatomical terms of muscle</span> Muscles terminology

Anatomical terminology is used to uniquely describe aspects of skeletal muscle, cardiac muscle, and smooth muscle such as their actions, structure, size, and location.

Femoral nerve dysfunction, also known as femoral neuropathy, is a rare type of peripheral nervous system disorder that arises from damage to nerves, specifically the femoral nerve. Given the location of the femoral nerve, indications of dysfunction are centered around the lack of mobility and sensation in lower parts of the legs. The causes of such neuropathy can stem from both direct and indirect injuries, pressures and diseases. Physical examinations are usually first carried out, depending on the high severity of the injury. In the cases of patients with hemorrhage, imaging techniques are used before any physical examination. Another diagnostic method, electrodiagnostic studies, are recognized as the gold standard that is used to confirm the injury of the femoral nerve. After diagnosis, different treatment methods are provided to the patients depending upon their symptoms in order to effectively target the underlying causes. Currently, femoral neuropathy is highly underdiagnosed and its precedent medical history is not well documented worldwide.

References

  1. Karin Schmalfeld (2012), Zum Einfluss neuromuskulärer Beanspruchungen auf den Bewegungsablauf und die intermuskuläre Koordination- Untersucht an zyklisch ausgeführten Bizepscurls (in German), Paderborn, p. 42{{citation}}: CS1 maint: location missing publisher (link)
  2. Chabran, E., Maton, B. & Fourment, A. (2002), "Effects of postural muscle fati-gue on the relation between segmental posture and movement.", Journal OfElectromyography and Kinesiology (in German), pp. 67-79{{citation}}: CS1 maint: multiple names: authors list (link)
  3. Basmajian, J.V. & De Luca, C.J. (1985), Muscles Alive: Their Functions Revealed by Electromyography (in German), Baltimore, ISBN   068300414X {{citation}}: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link)
  4. Hamill, J. & Knutzen, K.M. (1995), Biomechanical basis of human movement. (in German), Philadelphia, ISBN   9780781763066 {{citation}}: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link)
  5. Björn Stapelfeld& Lorenz Assländer (2009), Albert Gollhofer & Erich Müller (ed.), Beiträge zur lehre und Forschung im Sport; 171 Handbuch Sport-Biomechanik (in German), Hofmann, p. 328, ISBN   978-3778047101
  6. Ralf Brandes · Florian Lang · Robert F. Schmidt, ed. (2 April 2019), Physiologie des Menschen (in German) (32 ed.), Springer-Lehrbuch, p. 597, ISBN   978-3-662-56467-7