International Cloud Experiment

Last updated

International Cloud Experiment (formally known as "Tropical Warm Pool International Cloud Experiment" - TWP-ICE) was a scientific mission to gather information on tropical storm formation. [1] It involved seven airplanes, a ship anchored off Darwin in Australia, RV Southern Surveyor, and over 250 scientists and researchers. [2]

The I.C.E. took place from 21 January to 23 February 2006, [3] and had been in the planning stages since September 2003. [4]

The experiment was a collaboration between the US Department of Energy Atmospheric Radiation Measurement (ARM) Program, [5] the Bureau of Meteorology (Australia), [6] NASA [7] the European Commission DG RTD-1.2 and several United States, Australian, Canadian and European Universities. [8]

During the experiment, a record-breaking tropical typhoon arose, then spent seven days as a "landphoon" over the Australian desert. [9]

The Australian Broadcasting Corporation released in 2007 Thunderheads, a 47-minute program which has shown on the Smithsonian Channel.

Related Research Articles

Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloudy. On Earth, most weather phenomena occur in the lowest layer of the planet's atmosphere, the troposphere, just below the stratosphere. Weather refers to day-to-day temperature, precipitation, and other atmospheric conditions, whereas climate is the term for the averaging of atmospheric conditions over longer periods of time. When used without qualification, "weather" is generally understood to mean the weather of Earth.

<span class="mw-page-title-main">Cirrus cloud</span> Genus of atmospheric cloud

Cirrus is a genus of high cloud made of ice crystals. Cirrus clouds typically appear delicate and wispy with white strands. Cirrus are usually formed when warm, dry air rises, causing water vapor deposition onto rocky or metallic dust particles at high altitudes. Globally, they form anywhere between 4,000 and 20,000 meters above sea level, with the higher elevations usually in the tropics and the lower elevations in more polar regions.

<span class="mw-page-title-main">Climate model</span> Quantitative methods used to simulate climate

Numerical climate models use quantitative methods to simulate the interactions of the important drivers of climate, including atmosphere, oceans, land surface and ice. They are used for a variety of purposes from study of the dynamics of the climate system to projections of future climate. Climate models may also be qualitative models and also narratives, largely descriptive, of possible futures.

<span class="mw-page-title-main">Cloud</span> Visible mass of liquid droplets or frozen crystals suspended in the atmosphere

In meteorology, a cloud is an aerosol consisting of a visible mass of miniature liquid droplets, frozen crystals, or other particles suspended in the atmosphere of a planetary body or similar space. Water or various other chemicals may compose the droplets and crystals. On Earth, clouds are formed as a result of saturation of the air when it is cooled to its dew point, or when it gains sufficient moisture from an adjacent source to raise the dew point to the ambient temperature.

<span class="mw-page-title-main">Weather forecasting</span> Science and technology application

Weather forecasting is the application of science and technology to predict the conditions of the atmosphere for a given location and time. People have attempted to predict the weather informally for millennia and formally since the 19th century.

The timeline of meteorology contains events of scientific and technological advancements in the area of atmospheric sciences. The most notable advancements in observational meteorology, weather forecasting, climatology, atmospheric chemistry, and atmospheric physics are listed chronologically. Some historical weather events are included that mark time periods where advancements were made, or even that sparked policy change.

<span class="mw-page-title-main">Precipitation</span> Product of the condensation of atmospheric water vapor that falls under gravity

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor, so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation but colloids, because the water vapor does not condense sufficiently to precipitate. Two processes, possibly acting together, can lead to air becoming saturated: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called showers.

<span class="mw-page-title-main">Nimbus program</span> Second-generation U.S. robotic spacecraft

The Nimbus satellites were second-generation U.S. robotic spacecraft launched between 1964 and 1978 used for meteorological research and development. The spacecraft were designed to serve as stabilized, Earth-oriented platforms for the testing of advanced systems to sense and collect atmospheric science data. Seven Nimbus spacecraft have been launched into near-polar, Sun-synchronous orbits beginning with Nimbus 1 on August 28, 1964. On board the Nimbus satellites are various instrumentation for imaging, sounding, and other studies in different spectral regions. The Nimbus satellites were launched aboard Thor-Agena rockets and Delta rockets.

<span class="mw-page-title-main">Cloud seeding</span> Method that condenses clouds to cause rainfall

Cloud seeding is a type of weather modification that aims to change the amount or type of precipitation that falls from clouds by dispersing substances into the air that serve as cloud condensation or ice nuclei, which alter the microphysical processes within the cloud. Its effectiveness is debated; some studies have suggested that it is "difficult to show clearly that cloud seeding has a very large effect." The usual objective is to increase precipitation, either for its own sake or to prevent precipitation from occurring in days afterward.

<span class="mw-page-title-main">Roy Spencer (meteorologist)</span>

Roy Warren Spencer is an American meteorologist. He is a principal research scientist at the University of Alabama in Huntsville, and the U.S. Science Team leader for the Advanced Microwave Scanning Radiometer (AMSR-E) on NASA's Aqua satellite. He has served as senior scientist for climate studies at NASA's Marshall Space Flight Center. He is known for his satellite-based temperature monitoring work, for which he was awarded the American Meteorological Society's Special Award. Spencer disagrees with the scientific consensus that most global warming in the past 50 years is the result of human activity, instead believing that anthropogenic greenhouse gas emissions have caused some warming, but that influence is small compared to natural variations in global average cloud cover.

<span class="mw-page-title-main">Pressure system</span> Relative peak or lull in the sea level pressure distribution

A pressure system is a peak or lull in the sea level pressure distribution. The surface pressure at sea level varies minimally, with the lowest value measured 87 kilopascals (26 inHg) and the highest recorded 108.57 kilopascals (32.06 inHg). High- and low-pressure systems evolve due to interactions of temperature differentials in the atmosphere, temperature differences between the atmosphere and water within oceans and lakes, the influence of upper-level disturbances, as well as the amount of solar heating or radiationized cooling an area receives. Pressure systems cause weather to be experienced locally. Low-pressure systems are associated with clouds and precipitation that minimize temperature changes throughout the day, whereas high-pressure systems normally associate with dry weather and mostly clear skies with larger diurnal temperature changes due to greater radiation at night and greater sunshine during the day. Pressure systems are analyzed by those in the field of meteorology within surface weather maps.

<span class="mw-page-title-main">Bureau of Meteorology</span> Australian government agency responsible for providing meteorology services

The Bureau of Meteorology is an executive agency of the Australian Government responsible for providing weather services to Australia and surrounding areas. It was established in 1906 under the Meteorology Act, and brought together the state meteorological services that existed before then. The states officially transferred their weather recording responsibilities to the Bureau of Meteorology on 1 January 1908.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

<span class="mw-page-title-main">Hot tower</span>

A hot tower is a tropical cumulonimbus cloud that reaches out of the lowest layer of the atmosphere, the troposphere, and into the stratosphere. These formations are called "hot" because of the large amount of latent heat released as water vapor condenses into liquid and freezes into ice within the cloud. Hot towers in regions of sufficient vorticity may acquire rotating updrafts; these are known as vortical hot towers In some instances, hot towers appear to develop characteristics of a supercell, with deep and persistent rotation present in the updraft. The role of hot towers in tropical weather was first formulated by Joanne Simpson in 1958. Hot towers dominated discussions in tropical meteorology in the 1960s and are now considered the main drivers of rising air within tropical cyclones and a major component of the Hadley circulation. Although the prevalence of hot towers in scientific literature decreased in the 1970s, hot towers remain an active area of research. The presence of hot towers in tropical cyclones is correlated with an increase in the tropical cyclones's intensities.

<span class="mw-page-title-main">Aeronomy of Ice in the Mesosphere</span> NASA satellite of the Explorer program

The Aeronomy of Ice in the Mesosphere is a NASA satellite launched in 2007 to conduct a planned 26-month study of noctilucent clouds (NLCs). It is the ninetieth Explorer program mission and is part of the NASA-funded Small Explorer program (SMEX).

<span class="mw-page-title-main">Climate classification</span> Systems that categorize the worlds climates

Climate classifications are systems that categorize the world's climates. A climate classification may correlate closely with a biome classification, as climate is a major influence on life in a region. One of the most used is the Köppen climate classification scheme first developed in 1884.

<span class="mw-page-title-main">Global Energy and Water Exchanges</span>

The Global Energy and Water Exchanges Project is an international research project and a core project of the World Climate Research Programme (WCRP).

<span class="mw-page-title-main">Rain</span> Precipitation in the form of water droplets

Rain is water droplets that have condensed from atmospheric water vapor and then fall under gravity. Rain is a major component of the water cycle and is responsible for depositing most of the fresh water on the Earth. It provides water for hydroelectric power plants, crop irrigation, and suitable conditions for many types of ecosystems.

<span class="mw-page-title-main">Joanne Simpson</span> American meteorologist (1923–2010)

Joanne Simpson was the first woman in the United States to receive a Ph.D. in meteorology, which she received in 1949 from the University of Chicago. Simpson received both her undergraduate and graduate degrees from the University of Chicago, and did post-doctoral work at Dartmouth College. Simpson was a member of the National Academy of Engineering, and taught and researched meteorology at numerous universities as well as the federal government. Simpson contributed to many areas of the atmospheric sciences, particularly in the field of tropical meteorology. She has researched hot towers, hurricanes, the trade winds, air-sea interactions, and helped develop the Tropical Rainfall Measuring Mission (TRMM).

Sreedharan Krishnakumari Satheesh is an Indian meteorologist and a professor at the Centre for Atmospheric and Oceanic Sciences of the Indian Institute of Science (IISc). He holds the chair of the Divecha Centre for Climate Change, a centre under the umbrella of the IISc for researches on climate variability, climate change and their impact on the environment. He is known for his studies on atmospheric aerosols and is an elected fellow of all the three major Indian science academies viz. Indian Academy of Sciences Indian National Science Academy and the National Academy of Sciences, India as well as The World Academy of Sciences. The Council of Scientific and Industrial Research, the apex agency of the Government of India for scientific research, awarded him the Shanti Swarup Bhatnagar Prize for Science and Technology, one of the highest Indian science awards for his contributions to Earth, Atmosphere, Ocean and Planetary Sciences in 2009. He received the TWAS Prize of The World Academy of Sciences in 2011. In 2018, he received the Infosys Prize, one of the highest monetary awards in India that recognize excellence in science and research, for his work in the field of climate change.

References

  1. U.S. Climate Scientists Join Collaborators in Australia to Begin Tropical Cloud Experiment
  2. Thunderheads Program Guide at ABC/Nature.
  3. Campaign : Tropical Warm Pool - International Cloud Experiment at ARM
  4. TWP-ICE Timeline Archived 20 October 2011 at the Wayback Machine at ARM
  5. TWP-ICE Science Plan Archived 20 October 2011 at the Wayback Machine - Cloud and rain characteristics in the Australian Monsoon
  6. TWP-ICE at the Bureau of Meteorology Research Centre Archived 17 October 2009 at the Wayback Machine (now part of CAWCR: The Centre for Australian Weather and Climate Research)
  7. TWP-ICE at NASA GCSS - Cirrus Cloud Working Group and Deep Convective Working Group
  8. TWP-ICE Executive Summary Archived 19 October 2009 at the Wayback Machine
  9. TWP-ICE Synoptic Overview, 1 February 2006 Archived 19 March 2011 at the Wayback Machine