Intravoxel incoherent motion

Last updated

Intravoxel incoherent motion (IVIM) imaging is a concept and a method initially introduced and developed by Le Bihan et al. [1] [2] to quantitatively assess all the microscopic translational motions that could contribute to the signal acquired with diffusion MRI. In this model, biological tissue contains two distinct environments: molecular diffusion of water in the tissue (sometimes referred to as 'true diffusion'), and microcirculation of blood in the capillary network (perfusion). The concept introduced by D. Le Bihan is that water flowing in capillaries (at the voxel level) mimics a random walk (“pseudo-diffusion” [2] ) (Fig.1), as long as the assumption that all directions are represented in the capillaries (i.e. there is no net coherent flow in any direction) is satisfied.

Contents

Fig. 1. IVIM1.jpg
Fig. 1.

It is responsible for a signal attenuation in diffusion MRI, which depends on the velocity of the flowing blood and the vascular architecture. Similarly to molecular diffusion, the effect of pseudodiffusion on the signal attenuation depends on the b value. However, the rate of signal attenuation resulting from pseudodiffusion is typically an order of magnitude greater than molecular diffusion in tissues, so its relative contribution to the diffusion-weighted MRI signal becomes significant only at very low b values, allowing diffusion and perfusion effects to be separated. [2] [3]

Model

In the presence of the magnetic field gradient pulses of a diffusion MRI sequence, the MRI signal gets attenuated due to diffusion and perfusion effects. In a simple model, this signal attenuation, S/So, can be written as: [2]

[1]

where is the volume fraction of incoherently flowing blood in the tissue (“flowing vascular volume”), the signal attenuation from the IVIM effect and is the signal attenuation from molecular diffusion in the tissue.

Assuming blood water flowing in the randomly oriented vasculature changes several times direction (at least 2) during the measurement time (model 1), one has for  :

[2]

where is the diffusion-sensitization of the MRI sequence, is the sum of the pseudo-diffusion coefficient associated to the IVIM effect and , the diffusion coefficient of water in blood:

[3]

where is the mean capillary segment length and is the blood velocity. [2] [4]

If blood water flows without changing direction (either because flow is slow or measurement time is short) while capillary segments are randomly and isotropically oriented (model 2), becomes:

[4]

where is a parameter linked to the gradient pulse amplitude and time course (similar to the b value). [2] [4]

In both cases, the perfusion effect results in a curvature of the diffusion attenuation plot towards b=0 (Fig.2).

Fig. 2. IVIM2.jpg
Fig. 2.

In a simple approach and under some approximations, the ADC calculated from 2 diffusion-weighted images acquired with b0=0 and b1, as ADC = ln(S(b0)/S (b1)), is: [2] [4]

[5]

where is the tissue diffusion coefficient. The ADC thus only depends on the flowing vascular volume (tissue vascularity) and not on the blood velocity and capillary geometry, which is a strong advantage. The contribution of perfusion to the ADC is larger when using small b values. On the other hand, set of data obtained from images acquired with a multiple b values can be fitted with Eq.[1] using either model 1 (Eq.[2,3]) or model 2(Eq.[4]) to estimate and/or blood velocity. The late part of the curve (towards high b values, generally above 1000 s/mm²) also presents some degree of curvature (Fig.2). This is because diffusion in biological tissues is not free (Gaussian), but can be hindered by many obstacles (in particular cell membranes) or even restricted (i.e. intracellular). Several models have been proposed to describe this curvature at higher b-values, mainly the “biexponential” model which assumes the presence of 2 water compartments with fast and slow diffusion [5] [6] (where neither compartment is the from IVIM), the relative 'fast' and 'slow' labels referring to restricted and hindered diffusion, rather than pseudodiffusion/perfusion and true (hindered) diffusion. Another alternative is the “kurtosis” model which quantifies the deviation from free (Gaussian) diffusion in the parameter (Eq. [7]). [7] [8]

Biexponential model:

[6]

Where and are the relative fractions and diffusion coefficients of the fast and slow compartments. This general formulation of a biexponential decay of diffusion-weighted imaging signal with b-value can be used for IVIM, which requires sampling of low b-values (<100 s/mm²) to capture pseudodiffusion decay, or for restriction imaging, which requires higher b-value acquisitions (>1000 s/mm²) to capture restricted diffusion.

Kurtosis model:

[7]

where is the tissue intrinsic diffusion coefficient and the Kurtosis parameter (deviation from Gaussian diffusion). Both models can be related assuming some hypotheses about the tissue structure and the measurement conditions. Separation of perfusion from diffusion requires good signal-to-noise ratios [9] [10] and there are some technical challenges to overcome (artifacts, influence of other bulk flow phenomena, etc.). [3] [11] [12] Also the “perfusion” parameters accessible with the IVIM method somewhat differs from the “classical” perfusion parameters obtained with tracer methods: “Perfusion” can be seen with the physiologist eyes (blood flow) or the radiologist eyes (vascular density). [13] [14] Indeed, there is room to improve the IVIM model and understand better its relationship with the functional vascular architecture and its biological relevance.

Applications

IVIM MRI was initially introduced to evaluate perfusion and produce maps of brain perfusion, for brain activation studies (before the introduction of BOLD fMRI) and clinical applications (stroke, brain tumors). [10] [15] [16] [17] [18] [19] Recent work has proven the validity of the IVIM concept from fMRI, with an increase in the IVIM perfusion parameters in brain activated regions, and the potential of the approach to aid in our understanding of the different vascular contributions to the fMRI signal. [20] [21] [22] [23] IVIM MRI has also been used in the context of fMRI in a negative way.

A limitation of BOLD fMRI is its spatial resolution, as flow increase in somewhat large arteries or veins feed or drain large neuronal territories. By inserting “diffusion” gradient pulses in the MRI sequence (corresponding to low b-values), one may crush the contribution of the largest vessels (with high D* values associated with fast flow) in the BOLD signal and improve the spatial resolution of the activation maps. [24] [25] [26] [27] [28] Several groups have relied on this trick, though not always considering referring to the IVIM concept. This IVIM concept has also been borrowed to improve other applications, for instance, arterial spin labeling (ASL) [29] [30] or to suppress signal from extracellular flowing fluid in perfused cell systems. [31] [32]

However, IVIM MRI has recently undergone a striking revival for applications not in the brain, but throughout the body as well. [33] Following earlier encouraging results in the kidneys, [34] [35] [36] or even the heart, [37] IVIM MRI really took off for liver applications. For instance, Luciani et al. [38] found that D* was significantly reduced in cirrhotic patients, which, according to the IVIM model, points out to reduce blood velocity (and flow). (Another theoretical, rather unlikely interpretation would be that capillary segments become longer or more straight in those patients with liver fibrosis). The perfusion fraction, f, which is linked to blood volume in the IVIM model, remained normal, confirming earlier results by Yamada et al. [39] Though, blood volume is expected to be reduced in liver cirrhosis.

One has to keep in mind that IVIM imaging has a differential sensitivity to vessel types, according to the range of motion sensitization (b values) which are used. [40] [41] Signal from large vessels with rapid flow disappears quickly with very low b values, while smaller vessels with slower flow might still contribute to the IVIM signal acquired with b values larger than 200 s/mm². It has also been shown that the parameter f, often related to perfusion fraction, is sensitive to differential spin-spin relaxation rates in the two model compartments (blood/tissue) and can thus be overestimated in highly perfused tissue. [42] Correction of this effect is achieved by additional images at a different echo time. [43] Many more applications are now under investigation, especially for imaging of patients suspected of cancer in the body (prostate, liver, kidney, pancreas, etc.) [12] and human placenta. [44] [45] A key feature of IVIM diffusion MRI is that it does not involve contrast agents, and it may appear as an interesting alternative for perfusion MRI in some patients at risk for Nephrogenic Systemic Fibrosis (NSF).

Related Research Articles

<span class="mw-page-title-main">Magnetic resonance imaging</span> Medical imaging technique

Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body. MRI does not involve X-rays or the use of ionizing radiation, which distinguishes it from computed tomography (CT) and positron emission tomography (PET) scans. MRI is a medical application of nuclear magnetic resonance (NMR) which can also be used for imaging in other NMR applications, such as NMR spectroscopy.

<span class="mw-page-title-main">Perfusion</span> Passage of fluid through the circulatory or lymphatic system to an organ or tissue

Perfusion is the passage of fluid through the circulatory system or lymphatic system to an organ or a tissue, usually referring to the delivery of blood to a capillary bed in tissue. Perfusion may also refer to fixation via perfusion, used in histological studies. Perfusion is measured as the rate at which blood is delivered to tissue, or volume of blood per unit time per unit tissue mass. The SI unit is m3/(s·kg), although for human organs perfusion is typically reported in ml/min/g. The word is derived from the French verb "perfuser" meaning to "pour over or through". All animal tissues require an adequate blood supply for health and life. Poor perfusion (malperfusion), that is, ischemia, causes health problems, as seen in cardiovascular disease, including coronary artery disease, cerebrovascular disease, peripheral artery disease, and many other conditions.

<span class="mw-page-title-main">Diffusion MRI</span> Method of utilizing water in magnetic resonance imaging

Diffusion-weighted magnetic resonance imaging is the use of specific MRI sequences as well as software that generates images from the resulting data that uses the diffusion of water molecules to generate contrast in MR images. It allows the mapping of the diffusion process of molecules, mainly water, in biological tissues, in vivo and non-invasively. Molecular diffusion in tissues is not random, but reflects interactions with many obstacles, such as macromolecules, fibers, and membranes. Water molecule diffusion patterns can therefore reveal microscopic details about tissue architecture, either normal or in a diseased state. A special kind of DWI, diffusion tensor imaging (DTI), has been used extensively to map white matter tractography in the brain.

Magnetic resonance elastography (MRE) is a form of elastography that specifically leverages MRI to quantify and subsequently map the mechanical properties of soft tissue. First developed and described at Mayo Clinic by Muthupillai et al. in 1995, MRE has emerged as a powerful, non-invasive diagnostic tool, namely as an alternative to biopsy and serum tests for staging liver fibrosis.

<span class="mw-page-title-main">Spin echo</span> Response of spin to electromagnetic radiation

In magnetic resonance, a spin echo or Hahn echo is the refocusing of spin magnetisation by a pulse of resonant electromagnetic radiation. Modern nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) make use of this effect.

During nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the longitudinal component of the total nuclear magnetic moment vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1.

Kenneth Kin Man Kwong is a Hong Kong-born American nuclear physicist. He is a pioneer in human brain imaging. He received his bachelor's degree in Political Science in 1972 from the University of California, Berkeley. He went on to receive his Ph.D. in physics from the University of California, Riverside studying photon-photon collision interactions.

Functional magnetic resonance imaging (fMRI) of the spinal cord is an adaptation of the fMRI method that has been developed for use in the brain. Although the basic principles underlying the methods are the same, spinal fMRI requires a number of specific adaptations to accommodate the periodic motion of the spinal cord, the small cross-sectional dimensions and length of the spinal cord, and the fact that the magnetic field that is used for MRI varies with position in the spinal cord because of magnetic susceptibility differences between bone and tissues. Spinal fMRI has been used to produce maps of neuronal activity at most levels of the spinal cord in response to various stimuli, such as touch, vibration, and thermal changes, and with motor tasks. Research applications of spinal fMRI to date include studies of normal sensory and motor function, and studies of the effects of trauma and multiple sclerosis on the spinal cord.

<span class="mw-page-title-main">Susceptibility weighted imaging</span>

Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images. This method exploits the susceptibility differences between tissues and uses the phase image to detect these differences. The magnitude and phase data are combined to produce an enhanced contrast magnitude image. The imaging of venous blood with SWI is a blood-oxygen-level dependent (BOLD) technique which is why it was referred to as BOLD venography. Due to its sensitivity to venous blood SWI is commonly used in traumatic brain injuries (TBI) and for high resolution brain venographies but has many other clinical applications. SWI is offered as a clinical package by Philips and Siemens but can be run on any manufacturer's machine at field strengths of 1.0 T, 1.5 T, 3.0 T and higher.

<span class="mw-page-title-main">Physics of magnetic resonance imaging</span> Overview article

The physics of magnetic resonance imaging (MRI) concerns fundamental physical considerations of MRI techniques and technological aspects of MRI devices. MRI is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels among others. Contrast agents may be injected intravenously or into a joint to enhance the image and facilitate diagnosis. Unlike CT and X-ray, MRI uses no ionizing radiation and is, therefore, a safe procedure suitable for diagnosis in children and repeated runs. Patients with specific non-ferromagnetic metal implants, cochlear implants, and cardiac pacemakers nowadays may also have an MRI in spite of effects of the strong magnetic fields. This does not apply on older devices, and details for medical professionals are provided by the device's manufacturer.

<span class="mw-page-title-main">Quantitative susceptibility mapping</span>

Quantitative Susceptibility Mapping (QSM) provides a novel contrast mechanism in Magnetic Resonance Imaging (MRI) different from traditional Susceptibility Weighted Imaging. The voxel intensity in QSM is linearly proportional to the underlying tissue apparent magnetic susceptibility, which is useful for chemical identification and quantification of specific biomarkers including iron, calcium, gadolinium, and super paramagnetic iron oxide (SPIO) nano-particles. QSM utilizes phase images, solves the magnetic field to susceptibility source inverse problem, and generates a three-dimensional susceptibility distribution. Due to its quantitative nature and sensitivity to certain kinds of material, potential QSM applications include standardized quantitative stratification of cerebral microbleeds and neurodegenerative disease, accurate gadolinium quantification in contrast enhanced MRI, and direct monitoring of targeted theranostic drug biodistribution in nanomedicine.

<span class="mw-page-title-main">Magnetic resonance imaging of the brain</span>

Magnetic resonance imaging of the brain uses magnetic resonance imaging (MRI) to produce high quality two-dimensional or three-dimensional images of the brain and brainstem as well as the cerebellum without the use of ionizing radiation (X-rays) or radioactive tracers.

<span class="mw-page-title-main">Perfusion MRI</span>

Perfusion MRI or perfusion-weighted imaging (PWI) is perfusion scanning by the use of a particular MRI sequence. The acquired data are then post-processed to obtain perfusion maps with different parameters, such as BV, BF, MTT and TTP.

Synthetic MRI is a simulation method in Magnetic Resonance Imaging (MRI), for generating contrast weighted images based on measurement of tissue properties. The synthetic (simulated) images are generated after an MR study, from parametric maps of tissue properties. It is thereby possible to generate several contrast weightings from the same acquisition. This is different from conventional MRI, where the signal acquired from the tissue is used to generate an image directly, often generating only one contrast weighting per acquisition. The synthetic images are similar in appearance to those normally acquired with an MRI scanner.

The history of magnetic resonance imaging (MRI) includes the work of many researchers who contributed to the discovery of nuclear magnetic resonance (NMR) and described the underlying physics of magnetic resonance imaging, starting early in the twentieth century. MR imaging was invented by Paul C. Lauterbur who developed a mechanism to encode spatial information into an NMR signal using magnetic field gradients in September 1971; he published the theory behind it in March 1973.

<span class="mw-page-title-main">MRI sequence</span>

An MRI sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance.

Arterial spin labeling (ASL), also known as arterial spin tagging, is a magnetic resonance imaging technique used to quantify cerebral blood perfusion by labelling blood water as it flows throughout the brain. ASL specifically refers to magnetic labeling of arterial blood below or in the imaging slab, without the need of gadolinium contrast. A number of ASL schemes are possible, the simplest being flow alternating inversion recovery (FAIR) which requires two acquisitions of identical parameters with the exception of the out-of-slice saturation; the difference in the two images is theoretically only from inflowing spins, and may be considered a 'perfusion map'. The ASL technique was developed by Alan P. Koretsky, Donald S. Williams, John A. Detre and John S. Leigh Jr in 1992.

Denis Le Bihan is a medical doctor, physicist, member of the Institut de France, member of the French Academy of Technologies and director since 2007 of NeuroSpin, an institution of the Atomic Energy and Alternative Energy Commission (CEA) in Saclay, dedicated to the study of the brain by magnetic resonance imaging (MRI) with a very high magnetic field. Denis Le Bihan has received international recognition for his outstanding work, introducing new imaging methods, particularly for the study of the human brain, as evidenced by the many international awards he has received, such as the Gold Medal of the International Society of Magnetic Resonance in Medicine (2001), the coveted Lounsbery Prize, the Louis D. Prize from the Institut de France, the prestigious Honda Prize (2012), the Louis-Jeantet Prize (2014), the Rhein Foundation Award (2021). His work has focused on the introduction, development and application of highly innovative methods, notably diffusion MRI.

Hyperpolarized 129Xe gas magnetic resonance imaging (MRI) is a medical imaging technique used to visualize the anatomy and physiology of body regions that are difficult to image with standard proton MRI. In particular, the lung, which lacks substantial density of protons, is particularly useful to be visualized with 129Xe gas MRI. This technique has promise as an early-detection technology for chronic lung diseases and imaging technique for processes and structures reliant on dissolved gases. 129Xe is a stable, naturally occurring isotope of xenon with 26.44% isotope abundance. It is one of two Xe isotopes, along with 131Xe, that has non-zero spin, which allows for magnetic resonance. 129Xe is used for MRI because its large electron cloud permits hyperpolarization and a wide range of chemical shifts. The hyperpolarization creates a large signal intensity, and the wide range of chemical shifts allows for identifying when the 129Xe associates with molecules like hemoglobin. 129Xe is preferred over 131Xe for MRI because 129Xe has spin 1/2, a longer T1, and 3.4 times larger gyromagnetic ratio (11.78 MHz/T).

Hyperpolarized gas MRI, also known as hyperpolarized helium-3 MRI or HPHe-3 MRI, is a medical imaging technique that uses hyperpolarized gases to improve the sensitivity and spatial resolution of magnetic resonance imaging (MRI). This technique has many potential applications in medicine, including the imaging of the lungs and other areas of the body with low tissue density.

References

  1. Le Bihan, D; Breton, E; Lallemand, D; Grenier, P; Cabanis, E; Laval-Jeantet, M (1986). "MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders". Radiology. 161 (2): 401–7. doi:10.1148/radiology.161.2.3763909. PMID   3763909.
  2. 1 2 3 4 5 6 7 Le Bihan, D; Breton, E; Lallemand, D; Aubin, ML; Vignaud, J; Laval-Jeantet, M (1988). "Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging". Radiology. 168 (2): 497–505. doi:10.1148/radiology.168.2.3393671. PMID   3393671.
  3. 1 2 Le Bihan, D. (1990). "Magnetic resonance imaging of perfusion". Magnetic Resonance in Medicine. 14 (2): 283–292. doi:10.1002/mrm.1910140213. PMID   2345508. S2CID   20138003.
  4. 1 2 3 Le Bihan, D; Turner, R (1992). "The capillary network: a link between IVIM and classical perfusion". Magnetic Resonance in Medicine. 27 (1): 171–8. doi:10.1002/mrm.1910270116. PMID   1435202. S2CID   17086774.
  5. Karger, J; Pfeifer, H.; Heink,W. (1988). Principles and applications of self-diffusion measurements by nuclear magnetic resonance. Advances in Magnetic and Optical Resonance. Vol. 12. pp. 1–89. doi:10.1016/b978-0-12-025512-2.50004-x. ISBN   9780120255122.{{cite book}}: |journal= ignored (help)
  6. Niendorf, T; Dijkhuizen, RM; Norris, DG; van Lookeren Campagne, M; Nicolay, K (Dec 1996). "Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging". Magnetic Resonance in Medicine. 36 (6): 847–57. doi:10.1002/mrm.1910360607. PMID   8946350. S2CID   25910939.
  7. Chabert, S; Meca, C.C.; Le Bihan, D. "Relevance of the information about the diffusion distribution in vivo given by kurtosis in q-space imaging". Proceedings, 12th ISMRM Annual Meeting: 1238.
  8. Jensen, Jens H.; Helpern, Joseph A. (2010). "MRI quantification of non-Gaussian water diffusion by kurtosis analysis". NMR in Biomedicine . 23 (7): 698–710. doi:10.1002/nbm.1518. PMC   2997680 . PMID   20632416.
  9. Pekar, James; Moonen, Chrit T. W.; van Zijl, Peter C. M. (1992). "On the precision of diffusion/perfusion imaging by gradient sensitization". Magnetic Resonance in Medicine. 23 (1): 122–129. doi:10.1002/mrm.1910230113. PMID   1734174. S2CID   35002973.
  10. 1 2 Wirestam, R; Brockstedt, S; Lindgren, A; Geijer, B; Thomsen, C; Holtås, S; Ståhlberg, F (1997). "The perfusion fraction in volunteers and in patients with ischaemic stroke". Acta Radiologica. 38 (6): 961–4. doi:10.1080/02841859709172110. PMID   9394649. S2CID   2790280.
  11. Le Bihan, D; Turner, R; Moonen, CT; Pekar, J (1991). "Imaging of diffusion and microcirculation with gradient sensitization: design, strategy, and significance". Journal of Magnetic Resonance Imaging. 1 (1): 7–28. doi:10.1002/jmri.1880010103. PMID   1802133. S2CID   524885.
  12. 1 2 Koh, DM; Collins, DJ; Orton, MR (2011). "Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges". AJR. American Journal of Roentgenology. 196 (6): 1351–61. doi:10.2214/AJR.10.5515. PMID   21606299.
  13. Henkelman, RM (1990). "Does IVIM measure classical perfusion?". Magnetic Resonance in Medicine. 16 (3): 470–5. doi:10.1002/mrm.1910160313. PMID   2077337. S2CID   9971534.
  14. Le Bihan, D; Turner, R (1992). "The capillary network: a link between IVIM and classical perfusion". Magnetic Resonance in Medicine. 27 (1): 171–8. doi:10.1002/mrm.1910270116. PMID   1435202. S2CID   17086774.
  15. Le Bihan, D (1988). "Intravoxel incoherent motion imaging using steady-state free precession". Magnetic Resonance in Medicine. 7 (3): 346–351. doi:10.1002/mrm.1910070312. PMID   3205150. S2CID   16939731.
  16. Le Bihan, D; Moonen, CT; van Zijl, PC; Pekar, J; DesPres, D (1991). "Measuring random microscopic motion of water in tissues with MR imaging: a cat brain study". Journal of Computer Assisted Tomography. 15 (1): 19–25. doi:10.1097/00004728-199101000-00002. PMID   1987198.
  17. Le Bihan, D; Douek, P; Argyropoulou, M; Turner, R; Patronas, N; Fulham, M (1993). "Diffusion and perfusion magnetic resonance imaging in brain tumors". Topics in Magnetic Resonance Imaging. 5 (1): 25–31. doi:10.1097/00002142-199300520-00005. PMID   8416686. S2CID   44720550.
  18. Chenevert, TL; Pipe, JG (1991). "Effect of bulk tissue motion on quantitative perfusion and diffusion magnetic resonance imaging" (PDF). Magnetic Resonance in Medicine. 19 (2): 261–5. doi:10.1002/mrm.1910190212. hdl: 2027.42/38486 . PMID   1881313. S2CID   7112475.
  19. Neil, JJ; Bosch, CS; Ackerman, JJ (1994). "An evaluation of the sensitivity of the intravoxel incoherent motion (IVIM) method of blood flow measurement to changes in cerebral blood flow". Magnetic Resonance in Medicine. 32 (1): 60–5. doi:10.1002/mrm.1910320109. PMID   8084238. S2CID   10042221.
  20. Song, AW; Wong, EC; Tan, SG; Hyde, JS (Feb 1996). "Diffusion weighted fMRI at 1.5 T.". Magnetic Resonance in Medicine. 35 (2): 155–8. doi:10.1002/mrm.1910350204. PMID   8622577. S2CID   29017212.
  21. Gangstead, SL; Song, AW (Aug 2002). "On the timing characteristics of the apparent diffusion coefficient contrast in fMRI". Magnetic Resonance in Medicine. 48 (2): 385–8. doi: 10.1002/mrm.10189 . PMID   12210948.
  22. Jin, T; Zhao, F; Kim, SG (2006). "Sources of functional apparent diffusion coefficient changes investigated by diffusion-weighted spin-echo fMRI". Magnetic Resonance in Medicine. 56 (6): 1283–92. doi: 10.1002/mrm.21074 . PMID   17051530.
  23. Song, AW; Woldorff, MG; Gangstead, S; Mangun, GR; McCarthy, G (2002). "Enhanced spatial localization of neuronal activation using simultaneous apparent-diffusion-coefficient and blood-oxygenation functional magnetic resonance imaging". NeuroImage. 17 (2): 742–50. doi:10.1006/nimg.2002.1217. PMID   12377149. S2CID   9992700.
  24. Boxerman, JL; Bandettini, PA; Kwong, KK; Baker, JR; Davis, TL; Rosen, BR; Weisskoff, RM (1995). "The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo". Magnetic Resonance in Medicine. 34 (1): 4–10. doi:10.1002/mrm.1910340103. PMID   7674897. S2CID   23133073.
  25. Lee, SP; Silva, AC, Kim, SG (2002). "Comparison of diffusion-weighted high-resolution CBF and spin-echo BOLD fMRI at 9.4 T." Magnetic Resonance in Medicine. 47 (4): 736–41. doi: 10.1002/mrm.10117 . PMID   11948735.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. Duong, TQ; Yacoub, E; Adriany, G; Hu, X; Ugurbil, K; Kim, SG (2003). "Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects". Magnetic Resonance in Medicine. 49 (6): 1019–27. doi:10.1002/mrm.10472. PMID   12768579. S2CID   1117904.
  27. Song, AW; Li, T (2003). "Improved spatial localization based on flow-moment-nulled and intra-voxel incoherent motion-weighted fMRI". NMR in Biomedicine. 16 (3): 137–43. doi: 10.1002/nbm.819 . PMID   12884357.
  28. Michelich, CR; Song, AW; Macfall, JR (2006). "Dependence of gradient-echo and spin-echo BOLD fMRI at 4 T on diffusion weighting". NMR in Biomedicine. 19 (5): 566–72. doi:10.1002/nbm.1035. PMID   16598695. S2CID   35234939.
  29. Kim, T; Kim, SG (2006). "Quantification of cerebral arterial blood volume using arterial spin labeling with intravoxel incoherent motion-sensitive gradients". Magnetic Resonance in Medicine. 55 (5): 1047–57. doi: 10.1002/mrm.20867 . PMID   16596632.
  30. Silva, AC; Williams, DS; Koretsky, AP (1997). "Evidence for the exchange of arterial spin-labeled water with tissue water in rat brain from diffusion-sensitized measurements of perfusion". Magnetic Resonance in Medicine. 38 (2): 232–7. doi:10.1002/mrm.1910380211. PMID   9256102. S2CID   269582.
  31. Van Zijl, PC; Moonen, CT; Faustino, P; Pekar, J; Kaplan, O; Cohen, JS (1991). "Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy". Proceedings of the National Academy of Sciences of the United States of America. 88 (8): 3228–32. Bibcode:1991PNAS...88.3228V. doi: 10.1073/pnas.88.8.3228 . PMC   51419 . PMID   2014244.
  32. Zhao, L; Sukstanskii, AL; Kroenke, CD; Song, J; Piwnica-Worms, D; Ackerman, JJ; Neil, JJ (2008). "Intracellular water specific MR of microbead-adherent cells: HeLa cell intracellular water diffusion". Magnetic Resonance in Medicine. 59 (1): 79–84. doi:10.1002/mrm.21440. PMC   2730972 . PMID   18050315.
  33. Le Bihan, D. (2008). "Intravoxel Incoherent Motion Perfusion MR Imaging: A Wake-Up Call". Radiology. 249 (3): 748–752. doi:10.1148/radiol.2493081301. PMID   19011179.
  34. Powers, TA; Lorenz, CH; Holburn, GE; Price, RR (1991). "Renal artery stenosis: in vivo perfusion MR imaging". Radiology. 178 (2): 543–8. doi:10.1148/radiology.178.2.1987621. PMID   1987621.
  35. Pickens DR, 3rd; Jolgren, DL; Lorenz, CH; Creasy, JL; Price, RR (1992). "Magnetic resonance perfusion/diffusion imaging of the excised dog kidney". Investigative Radiology. 27 (4): 287–92. doi:10.1097/00004424-199204000-00005. PMID   1601618.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  36. Tsuda, K; Murakami, T; Sakurai, K; Harada, K; Kim, T; Takahashi, S; Tomoda, K; Narumi, Y; Nakamura, H; Izumi, M; Tsukamoto, T (1997). "[Preliminary evaluation of the apparent diffusion coefficient of the kidney with a spiral IVIM sequence]". Nihon Igaku Hoshasen Gakkai Zasshi. Nippon Acta Radiologica. 57 (1): 19–22. PMID   9038058.
  37. Callot, Virginie; Bennett, Eric; Decking, Ulrich K.M.; Balaban, Robert S.; Wen, Han (2003). "In vivo study of microcirculation in canine myocardium using the IVIM method". Magnetic Resonance in Medicine. 50 (3): 531–540. doi:10.1002/mrm.10568. PMC   2881595 . PMID   12939761.
  38. Luciani, A.; Vignaud, A.; Cavet, M.; Tran Van Nhieu, J.; Mallat, A.; Ruel, L.; Laurent, A.; Deux, J.-F.; Brugieres, P.; Rahmouni, A. (2008). "Liver Cirrhosis: Intravoxel Incoherent Motion MR Imaging--Pilot Study". Radiology. 249 (3): 891–899. doi:10.1148/radiol.2493080080. PMID   19011186.
  39. Yamada, I; Aung, W; Himeno, Y; Nakagawa, T; Shibuya, H (1999). "Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging". Radiology. 210 (3): 617–23. doi:10.1148/radiology.210.3.r99fe17617. PMID   10207458.
  40. Lorenz, Christine H.; Pickens, David R.; Puffer, Donald B.; Price, Ronald R. (1991). "Magnetic resonance diffusion/perfusion phantom experiments". Magnetic Resonance in Medicine. 19 (2): 254–260. doi:10.1002/mrm.1910190211. PMID   1881312. S2CID   42073161.
  41. Kennan, RP; Gao, JH; Zhong, J; Gore, JC (1994). "A general model of microcirculatory blood flow effects in gradient sensitized MRI". Medical Physics. 21 (4): 539–45. Bibcode:1994MedPh..21..539K. doi:10.1118/1.597170. PMID   8058020.
  42. Lemke, A; Laun, FB; Simon, D; Stieltjes, B; Schad, LR (December 2010). "An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen". Magnetic Resonance in Medicine. 64 (6): 1580–5. doi: 10.1002/mrm.22565 . PMID   20665824. S2CID   1222061.
  43. Jerome, N P; d’Arcy, J A; Feiweier, T; Koh, D-M; Leach, M O; Collins, D J; Orton, M R (21 December 2016). "Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging". Physics in Medicine and Biology. 61 (24): N667–N680. Bibcode:2016PMB....61N.667J. doi:10.1088/1361-6560/61/24/N667. PMC   5952260 . PMID   27893459.
  44. Moore, RJ; Strachan, BK; Tyler, DJ; Duncan, KR; Baker, PN; Worthington, BS; Johnson, IR; Gowland, PA (2000). "In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI". Placenta. 21 (7): 726–32. doi:10.1053/plac.2000.0567. PMID   10985977.
  45. Moore, RJ; Issa, B; Tokarczuk, P; Duncan, KR; Boulby, P; Baker, PN; Bowtell, RW; Worthington, BS; Johnson, IR; Gowland, PA (2000). "In vivo intravoxel incoherent motion measurements in the human placenta using echo-planar imaging at 0.5 T.". Magnetic Resonance in Medicine. 43 (2): 295–302. doi:10.1002/(sici)1522-2594(200002)43:2<295::aid-mrm18>3.0.co;2-2. PMID   10680695. S2CID   17323922.