Isoperimetric dimension

Last updated

In mathematics, the isoperimetric dimension of a manifold is a notion of dimension that tries to capture how the large-scale behavior of the manifold resembles that of a Euclidean space (unlike the topological dimension or the Hausdorff dimension which compare different local behaviors against those of the Euclidean space).

Contents

In the Euclidean space, the isoperimetric inequality says that of all bodies with the same volume, the ball has the smallest surface area. In other manifolds it is usually very difficult to find the precise body minimizing the surface area, and this is not what the isoperimetric dimension is about. The question we will ask is, what is approximately the minimal surface area, whatever the body realizing it might be.

Formal definition

We say about a differentiable manifold M that it satisfies a d-dimensional isoperimetric inequality if for any open set D in M with a smooth boundary one has

The notations vol and area refer to the regular notions of volume and surface area on the manifold, or more precisely, if the manifold has n topological dimensions then vol refers to n-dimensional volume and area refers to (n  1)-dimensional volume. C here refers to some constant, which does not depend on D (it may depend on the manifold and on d).

The isoperimetric dimension of M is the supremum of all values of d such that M satisfies a d-dimensional isoperimetric inequality.

Examples

A d-dimensional Euclidean space has isoperimetric dimension d. This is the well known isoperimetric problem as discussed above, for the Euclidean space the constant C is known precisely since the minimum is achieved for the ball.

An infinite cylinder (i.e. a product of the circle and the line) has topological dimension 2 but isoperimetric dimension 1. Indeed, multiplying any manifold with a compact manifold does not change the isoperimetric dimension (it only changes the value of the constant C). Any compact manifold has isoperimetric dimension 0.

It is also possible for the isoperimetric dimension to be larger than the topological dimension. The simplest example is the infinite jungle gym, which has topological dimension 2 and isoperimetric dimension 3. See for pictures and Mathematica code.

The hyperbolic plane has topological dimension 2 and isoperimetric dimension infinity. In fact the hyperbolic plane has positive Cheeger constant. This means that it satisfies the inequality

which obviously implies infinite isoperimetric dimension.

Of graphs

The isoperimetric dimension of graphs can be defined in a similar fashion. A precise definition is given in Chung's survey. [1] Area and volume are measured by set sizes. For every subset A of the graph G one defines as the set of vertices in with a neighbor in A. A d-dimensional isoperimetric inequality is now defined by

(This MathOverflow question provides more details.) The graph analogs of all the examples above hold but the definition is slightly different in order to avoid that the isoperimetric dimension of any finite graph is 0: In the above formula the volume of is replaced by (see Chung's survey, section 7).

The isoperimetric dimension of a d-dimensional grid is d. In general, the isoperimetric dimension is preserved by quasi isometries, both by quasi-isometries between manifolds, between graphs, and even by quasi isometries carrying manifolds to graphs, with the respective definitions. In rough terms, this means that a graph "mimicking" a given manifold (as the grid mimics the Euclidean space) would have the same isoperimetric dimension as the manifold. An infinite complete binary tree has isoperimetric dimension ∞.[ citation needed ]

Consequences of isoperimetry

A simple integration over r (or sum in the case of graphs) shows that a d-dimensional isoperimetric inequality implies a d-dimensional volume growth, namely

where B(x,r) denotes the ball of radius r around the point x in the Riemannian distance or in the graph distance. In general, the opposite is not true, i.e. even uniformly exponential volume growth does not imply any kind of isoperimetric inequality. A simple example can be had by taking the graph Z (i.e. all the integers with edges between n and n + 1) and connecting to the vertex n a complete binary tree of height |n|. Both properties (exponential growth and 0 isoperimetric dimension) are easy to verify.

An interesting exception is the case of groups. It turns out that a group with polynomial growth of order d has isoperimetric dimension d. This holds both for the case of Lie groups and for the Cayley graph of a finitely generated group.

A theorem of Varopoulos connects the isoperimetric dimension of a graph to the rate of escape of random walk on the graph. The result states

Varopoulos' theorem: If G is a graph satisfying a d-dimensional isoperimetric inequality then

whereis the probability that a random walk onGstarting fromxwill be inyafternsteps, andCis some constant.

Related Research Articles

<span class="mw-page-title-main">Euclidean space</span> Fundamental space of geometry

Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any positive integer dimension n, which are called Euclidean n-spaces when one wants to specify their dimension. For n equal to one or two, they are commonly called respectively Euclidean lines and Euclidean planes. The qualifier "Euclidean" is used to distinguish Euclidean spaces from other spaces that were later considered in physics and modern mathematics.

<span class="mw-page-title-main">Metric space</span> Mathematical space with a notion of distance

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry.

In differential geometry, a Riemannian manifold or Riemannian space(M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.

<span class="mw-page-title-main">Isometry</span> Distance-preserving mathematical transformation

In mathematics, an isometry is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος isos meaning "equal", and μέτρον metron meaning "measure".

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

<span class="mw-page-title-main">Hyperbolic space</span> Non-Euclidean geometry

In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.

In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations between points. The definition, introduced by Mikhael Gromov, generalizes the metric properties of classical hyperbolic geometry and of trees. Hyperbolicity is a large-scale property, and is very useful to the study of certain infinite groups called Gromov-hyperbolic groups.

<span class="mw-page-title-main">Manifold</span> Topological space that locally resembles Euclidean space

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space.

<span class="mw-page-title-main">Systolic geometry</span> Form of differential geometry

In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its arithmetical, ergodic, and topological manifestations. See also a slower-paced Introduction to systolic geometry.

In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a complete, finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique. The theorem was proven for closed manifolds by Mostow (1968) and extended to finite volume manifolds by Marden (1974) in 3 dimensions, and by Prasad (1973) in all dimensions at least 3. Gromov (1981) gave an alternate proof using the Gromov norm. Besson, Courtois & Gallot (1996) gave the simplest available proof.

In differential geometry, the Margulis lemma is a result about discrete subgroups of isometries of a non-positively curved Riemannian manifold. Roughly, it states that within a fixed radius, usually called the Margulis constant, the structure of the orbits of such a group cannot be too complicated. More precisely, within this radius around a point all points in its orbit are in fact in the orbit of a nilpotent subgroup.

<span class="mw-page-title-main">Pu's inequality</span>

In differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it.

<span class="mw-page-title-main">Quasi-isometry</span>

In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces.

In Riemannian geometry, the Cheeger isoperimetric constant of a compact Riemannian manifold M is a positive real number h(M) defined in terms of the minimal area of a hypersurface that divides M into two disjoint pieces. In 1970, Jeff Cheeger proved an inequality that related the first nontrivial eigenvalue of the Laplace–Beltrami operator on M to h(M). This proved to be a very influential idea in Riemannian geometry and global analysis and inspired an analogous theory for graphs.

<span class="mw-page-title-main">Introduction to systolic geometry</span> Non-technical introduction to systolic geometry

Systolic geometry is a branch of differential geometry, a field within mathematics, studying problems such as the relationship between the area inside a closed curve C, and the length or perimeter of C. Since the area A may be small while the length l is large, when C looks elongated, the relationship can only take the form of an inequality. What is more, such an inequality would be an upper bound for A: there is no interesting lower bound just in terms of the length.

In the mathematical subject of geometric group theory, a Dehn function, named after Max Dehn, is an optimal function associated to a finite group presentation which bounds the area of a relation in that group in terms of the length of that relation. The growth type of the Dehn function is a quasi-isometry invariant of a finitely presented group. The Dehn function of a finitely presented group is also closely connected with non-deterministic algorithmic complexity of the word problem in groups. In particular, a finitely presented group has solvable word problem if and only if the Dehn function for a finite presentation of this group is recursive. The notion of a Dehn function is motivated by isoperimetric problems in geometry, such as the classic isoperimetric inequality for the Euclidean plane and, more generally, the notion of a filling area function that estimates the area of a minimal surface in a Riemannian manifold in terms of the length of the boundary curve of that surface.

<span class="mw-page-title-main">Configuration space (mathematics)</span>

In mathematics, a configuration space is a construction closely related to state spaces or phase spaces in physics. In physics, these are used to describe the state of a whole system as a single point in a high-dimensional space. In mathematics, they are used to describe assignments of a collection of points to positions in a topological space. More specifically, configuration spaces in mathematics are particular examples of configuration spaces in physics in the particular case of several non-colliding particles.

References

  1. Chung, Fan. "Discrete Isoperimetric Inequalities" (PDF).{{cite journal}}: Cite journal requires |journal= (help)

Discusses the topic in the context of manifolds, no mention of graphs.
This paper contains the result that on groups of polynomial growth, volume growth and isoperimetric inequalities are equivalent. In French.
This paper contains a precise definition of the isoperimetric dimension of a graph, and establishes many of its properties.