Isotopic resonance hypothesis

Last updated

The isotopic resonance hypothesis(IsoRes) [1] [2] postulates that certain isotopic compositions of chemical elements affect kinetics of chemical reactions involving molecules built of these elements. The isotopic compositions for which this effect is predicted are called resonance isotopic compositions.

Contents

Fundamentally, the IsoRes hypothesis relies on a postulate that less complex systems exhibit faster kinetics than equivalent but more complex systems. Furthermore, system's complexity is affected by its symmetry (more symmetric systems are simpler), and symmetry (in general meaning) of reactants may be affected by their isotopic composition.

The term “resonance” relates to the use of this term in nuclear physics, where peaks in the dependence of a reaction cross section upon energy are called “resonances”. Similarly, a sharp increase (or decrease) in the reaction kinetics as a function of the average isotopic mass of a certain element is called here a resonance.

History of formulation

The concept of isotopes developed from radioactivity. The pioneering work on radioactivity by Henri Becquerel, Marie Curie and Pierre Curie was awarded the Nobel Prize in Physics in 1903. Later Frederick Soddy would take radioactivity from physics to chemistry and shed light on the nature of isotopes, something with rendered him the Nobel Prize in Chemistry in 1921 (awarded in 1922).

The question of stable, non-radioactive isotopes was more difficult and required the development by Francis Aston of a high-resolution mass spectrograph, which allowed the separation of different stable isotopes of one and the same element. Francis Aston was awarded the 1922 Nobel Prize in Chemistry for this achievement. With his enunciation of the whole-number rule, Aston solved a problem that had riddled chemistry for a hundred years. The understanding was that different isotopes of a given element would be chemically identical.

It was discovered in the 1930s by Harold Urey in 1932 (awarded the Nobel Prize in Chemistry in 1934).[ citation needed ] It was early on found that the deuterium content had a profound effect on chemistry and biochemistry.

In the linear approximation, the effect of isotopic substitution is proportional to the mass ratio of the heavy and light isotope. Thus chemical and biological effects of heavier isotopes of the “biological” atoms C, N and O are expected to be much smaller since the mass ratios for the normal to heavier isotopes are much closer to unity than the factor two for hydrogen to deuterium. However, it has been reported in 1930s, [3] and then again in 1970s [4] [5] and 1990s, [6] as well as recently, [7] that relatively small changes in the content of the heavy isotope of hydrogen, deuterium, has profound effects on biological systems. These strong nonlinear effects could not be fully rationalized based on the known concepts of the isotopic effects. These and other observations make it possible that isotopes have a much more profound importance than could ever have been imagined by the pioneers.

In 2011 Roman Zubarev formulated the isotope resonance hypothesis. [1] [2] It originated in the following, unexpected observation. Define ΔMm = Mmono - Mnom, where Mmono is the monoisotopic mass (e.g. O = 15.994915 Da) and Mnom is the nominal (integer) mass, i.e., the number of nucleons (e.g. 16O = 16). ΔMm is a constant in the whole Universe. Define ΔMis = Mav - Mmono, where Mav is the average isotopic mass (e.g. O = 15.999 Da on Earth). Obviously ΔMis depends on the precise isotopic composition for a given molecule. Finally define NMD = 1000ΔMm/Mnom and NIS = 1000ΔMis/Mnom, where NMD [in units of ‰] and NIS [in units of ‰] are the normalized isotopic defect and shift, respectively. If NIS is plotted as a function of NMD for a large number of terrestrial peptides, one would anticipate a homogenous distribution of data points (as in Fig. 1B). This is not what was found by Zubarev's team, [1] instead they found band gap in the distribution with a narrow line in the middle (Fig. 1A).

This serendipitous discovery led Zubarev to formulate the isotope resonance hypothesis. [2]

Analogues in science

As an example of isotopic symmetry (in compositional, and not in geometrical sense) affecting the kinetics of physic-chemical processes, see mass independent isotope fractionation in ozone O3.

Implication for the origin of life

According to the IsoRes hypothesis, there are certain resonance isotopic compositions at which terrestrial organisms thrive best. Curiously, average terrestrial isotopic compositions are very close to a resonance affecting a large class of amino acids and polypeptides, the molecules of outmost importance for life. [1] Thus, the IsoRes hypothesis suggests that early life on Earth was aided, perhaps critically, by the proximity to an IsoRes. In contrast, there is no strong resonance for then atmosphere of Mars, which led to a prediction that life could not have originated on Mars and that the planet is probably sterile. [8]

Other nontrivial predictions

One would expect that enrichment of heavy isotopes leads to progressively slower reactions, but the IsoRes hypothesis suggests that there exist certain resonance compositions for which kinetics increases even for higher abundances of heavy stable isotopes. For example, at 9.5% 13C, 10.9% 15N and 6.6% 18O (when all three elements are 10-35 times enriched compared to their natural abundances) and normal deuterium composition (150 ppm or 0.015%), a very strong resonance (Fig. 1C) is predicted (“super-resonance”). [8] Yet another nontrivial prediction of the IsoRes hypothesis is that at ≈250-350 ppm deuterium content, the terrestrial resonance becomes “perfect”, and the rates of biochemical reactions and growth of terrestrial organisms further increase. This prediction seems to be matched by at least some experimental observations. [8] [9]

Experimental verification

The IsoRes hypothesis has been tested experimentally by means of growth of E. coli and found to be supported by extremely strong statistics (p << 10−15). [8] Particular strong evidence of faster growth was found for the “super-resonance”.

Fig1 IsoRes.jpg
Fig1

Fig. 1. 2D plot of molecular masses of 3000 E. coli tryptic peptides. A – terrestrial isotopic compositions (red arrow shows the line representing the resonance); B – 18O abundance is increased by 20%, which destroyed the terrestrial resonance; C – isotopic compositions of the “super-resonance”, where all dots (molecules) are perfectly aligned. Adapted from ref. 4.

See also

Related Research Articles

The following outline is provided as an overview of and topical guide to chemistry:

<span class="mw-page-title-main">Deuterium</span> Isotope of hydrogen with one neutron

Deuterium is one of two stable isotopes of hydrogen. The nucleus of a deuterium atom, called a deuteron, contains one proton and one neutron, whereas the far more common protium has no neutrons in the nucleus. Deuterium has a natural abundance in Earth's oceans of about one atom of deuterium among every 6,420 atoms of hydrogen. Thus deuterium accounts for approximately 0.0156% by number of all the naturally occurring hydrogen in the oceans, while protium accounts for more than 99.98%. The abundance of deuterium changes slightly from one kind of natural water to another.

<span class="mw-page-title-main">Heavy water</span> Form of water

Heavy water is a form of water whose hydrogen atoms are all deuterium rather than the common hydrogen-1 isotope that makes up most of the hydrogen in normal water. The presence of the heavier hydrogen isotope gives the water different nuclear properties, and the increase in mass gives it slightly different physical and chemical properties when compared to normal water.

Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the entire Solar System, and has made important contributions to the understanding of a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. It is an integrated field of chemistry and geology.

<span class="mw-page-title-main">Nuclear chemistry</span> Branch of chemistry dealing with radioactivity, transmutation and other nuclear processes

Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties.

In physical organic chemistry, a kinetic isotope effect (KIE) is the change in the reaction rate of a chemical reaction when one of the atoms in the reactants is replaced by one of its isotopes. Formally, it is the ratio of rate constants for the reactions involving the light (kL) and the heavy (kH) isotopically substituted reactants (isotopologues):

Isotopic labeling is a technique used to track the passage of an isotope through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific atoms by their isotope. The reactant is then allowed to undergo the reaction. The position of the isotopes in the products is measured to determine the sequence the isotopic atom followed in the reaction or the cell's metabolic pathway. The nuclides used in isotopic labeling may be stable nuclides or radionuclides. In the latter case, the labeling is called radiolabeling.

<span class="mw-page-title-main">Theoretical astronomy</span> Applied and interdisciplinary physics

Theoretical astronomy is the use of analytical and computational models based on principles from physics and chemistry to describe and explain astronomical objects and astronomical phenomena. Theorists in astronomy endeavor to create theoretical models and from the results predict observational consequences of those models. The observation of a phenomenon predicted by a model allows astronomers to select between several alternate or conflicting models as the one best able to describe the phenomena.

In chemistry, isotopologues are molecules that differ only in their isotopic composition. They have the same chemical formula and bonding arrangement of atoms, but at least one atom has a different number of neutrons than the parent.

Kinetic fractionation is an isotopic fractionation process that separates stable isotopes from each other by their mass during unidirectional processes. Biological processes are generally unidirectional and are very good examples of "kinetic" isotope reactions. All organisms preferentially use lighter isotopic species, because "energy costs" are lower, resulting in a significant fractionation between the substrate (heavier) and the biologically mediated product (lighter). As an example, photosynthesis preferentially takes up the light isotope of carbon 12C during assimilation of an atmospheric CO2 molecule. This kinetic isotope fractionation explains why plant material (and thus fossil fuels, which are derived from plants) is typically depleted in 13C by 25 per mil (2.5 per cent) relative to most inorganic carbon on Earth.

Although there are nine known isotopes of helium (2He), only helium-3 and helium-4 are stable. All radioisotopes are short-lived, the longest-lived being 6
He
with a half-life of 806.92(24) milliseconds. The least stable is 10
He
, with a half-life of 260(40) yoctoseconds, although it is possible that 2
He
may have an even shorter half-life.

The E1cB elimination reaction is a type of elimination reaction which occurs under basic conditions, where the hydrogen to be removed is relatively acidic, while the leaving group is a relatively poor one. Usually a moderate to strong base is present. E1cB is a two-step process, the first step of which may or may not be reversible. First, a base abstracts the relatively acidic proton to generate a stabilized anion. The lone pair of electrons on the anion then moves to the neighboring atom, thus expelling the leaving group and forming double or triple bond. The name of the mechanism - E1cB - stands for Elimination Unimolecular conjugate Base. Elimination refers to the fact that the mechanism is an elimination reaction and will lose two substituents. Unimolecular refers to the fact that the rate-determining step of this reaction only involves one molecular entity. Finally, conjugate base refers to the formation of the carbanion intermediate, which is the conjugate base of the starting material.

Induced radioactivity, also called artificial radioactivity or man-made radioactivity, is the process of using radiation to make a previously stable material radioactive. The husband and wife team of Irène Joliot-Curie and Frédéric Joliot-Curie discovered induced radioactivity in 1934, and they shared the 1935 Nobel Prize in Chemistry for this discovery.

<span class="mw-page-title-main">History of mass spectrometry</span>

The history of mass spectrometry has its roots in physical and chemical studies regarding the nature of matter. The study of gas discharges in the mid 19th century led to the discovery of anode and cathode rays, which turned out to be positive ions and electrons. Improved capabilities in the separation of these positive ions enabled the discovery of stable isotopes of the elements. The first such discovery was with the element neon, which was shown by mass spectrometry to have at least two stable isotopes: 20Ne and 22Ne. Mass spectrometers were used in the Manhattan Project for the separation of isotopes of uranium necessary to create the atomic bomb.

Hydrogen–deuterium exchange is a chemical reaction in which a covalently bonded hydrogen atom is replaced by a deuterium atom, or vice versa. It can be applied most easily to exchangeable protons and deuterons, where such a transformation occurs in the presence of a suitable deuterium source, without any catalyst. The use of acid, base or metal catalysts, coupled with conditions of increased temperature and pressure, can facilitate the exchange of non-exchangeable hydrogen atoms, so long as the substrate is robust to the conditions and reagents employed. This often results in perdeuteration: hydrogen-deuterium exchange of all non-exchangeable hydrogen atoms in a molecule.

<span class="mw-page-title-main">Mass (mass spectrometry)</span> Physical quantities being measured

The mass recorded by a mass spectrometer can refer to different physical quantities depending on the characteristics of the instrument and the manner in which the mass spectrum is displayed.

<span class="mw-page-title-main">Isotope</span> Different atoms of the same element

Isotopes are distinct nuclear species of the same element. They have the same atomic number and position in the periodic table, but differ in nucleon numbers due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties.

Roman A. Zubarev is a professor of medicinal proteomics in the Department of Medical Biochemistry and Biophysics at the Karolinska Institutet. His research focuses on the use of mass spectrometry in biology and medicine.

Hydrogen isotope biogeochemistry is the scientific study of biological, geological, and chemical processes in the environment using the distribution and relative abundance of hydrogen isotopes. There are two stable isotopes of hydrogen, protium 1H and deuterium 2H, which vary in relative abundance on the order of hundreds of permil. The ratio between these two species can be considered the hydrogen isotopic fingerprint of a substance. Understanding isotopic fingerprints and the sources of fractionation that lead to variation between them can be applied to address a diverse array of questions ranging from ecology and hydrology to geochemistry and paleoclimate reconstructions. Since specialized techniques are required to measure natural hydrogen isotope abundance ratios, the field of hydrogen isotope biogeochemistry provides uniquely specialized tools to more traditional fields like ecology and geochemistry.

<span class="mw-page-title-main">Position-specific isotope analysis</span>

Position-specific isotope analysis, also called site-specific isotope analysis, is a branch of isotope analysis aimed at determining the isotopic composition of a particular atom position in a molecule. Isotopes are elemental variants with different numbers of neutrons in their nuclei, thereby having different atomic masses. Isotopes are found in varying natural abundances depending on the element; their abundances in specific compounds can vary from random distributions due to environmental conditions that act on the mass variations differently. These differences in abundances are called "fractionations," which are characterized via stable isotope analysis.

References

  1. 1 2 3 4 R.A. Zubarev et al., Early life relict feature in peptide mass distribution, Cent. Eur. J. Biol. 5, 190 (2010)
  2. 1 2 3 R.A. Zubarev, Role of stable isotopes in life – Testing isotopic resonance hypothesis, Genomics Proteomics Bioinformatics 9, 15 (2011)
  3. T. C. Barnes. The effect of heavy water of low concentration on Euglena. Science 79, 370 (1934)
  4. V. I. Lobyshev et al. Activation of Na,K-ATPasa by low concentration of D2O and inhibition by high concentrations, Biofizika 23, 397 (1978)
  5. V. I. Lobyshev. Activating influence of heavy water of small concentration on the regeneration of hydroid polyp Obelia Geniculata. Biofizika 28, 666 (1983)
  6. G. Somlyai et al. Naturally occurring deuterium is essential for the normal growth of cells. FEBS 317, 1 (1993)
  7. A. Kovács et al. Deuterium Depletion May Delay the Progression of Prostate Cancer, J Cancer Ther, 2, 548 (2011
  8. 1 2 3 4 X. Xie and R.A. Zubarev, Effects of low-level deuterium enrichment on bacterial growth, PLoS One 9, e102071 (2014)
  9. X. Xie and R.A. Zubarev, Isotopic resonance hypothesis: Experimental verification by Escherichia coli growth measurements, Sci. Rep. 5, 9215 (2015)