Iyoite

Last updated
Iyoite
General
Category Halide minerals
Formula
(repeating unit)
MnCuCl(OH)3
IMA symbol Iy [1]
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P21/m
Unit cell a = 5.622, b = 6.586
c = 5.719 [Å]; β = 91.55°; Z = 2
Identification
References [2]

Iyoite is a very rare manganese copper chloride hydroxide mineral with the formula MnCuCl(OH)3. Iyoite is a new member of the atacamite group, and it an analogue of botallackite characterized in manganese and copper ordering. Iyoite is monoclinic (space group P21/m). It is chemically similar to misakiite. Both minerals come from the Ohku mine in the Ehime prefecture, Japan. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Chalcanthite</span> Sulfate mineral

Chalcanthite (from Ancient Greek χάλκανθον (khálkanthon), from χαλκός (khalkós) 'copper' and ἄνθος (ánthos) 'flower, bloom') is a richly colored blue-green water-soluble sulfate mineral CuSO4·5H2O. It is commonly found in the late-stage oxidation zones of copper deposits. Due to its ready solubility, chalcanthite is more common in arid regions.

<span class="mw-page-title-main">Tephroite</span>

Tephroite is the manganese endmember of the olivine group of nesosilicate minerals with the formula Mn2SiO4. A solid solution series exists between tephroite and its analogues, the group endmembers fayalite and forsterite. Divalent iron or magnesium may readily replace manganese in the olivine crystal structure.

<span class="mw-page-title-main">Adamite</span> Zinc arsenate hydroxide mineral

Adamite is a zinc arsenate hydroxide mineral, Zn2AsO4OH. It is a mineral that typically occurs in the oxidized or weathered zone above zinc ore occurrences. Pure adamite is colorless, but usually it possess yellow color due to Fe compounds admixture. Tints of green also occur and are connected with copper substitutions in the mineral structure. Olivenite is a copper arsenate that is isostructural with adamite and there is considerable substitution between zinc and copper resulting in an intermediate called cuproadamite. Zincolivenite is a recently discovered mineral being an intermediate mineral with formula CuZn(AsO4)(OH). Manganese, cobalt, and nickel also substitute in the structure. An analogous zinc phosphate, tarbuttite, is known.

<span class="mw-page-title-main">Hausmannite</span> Mixed oxide mineral of manganese II and III: Mn3O4

Hausmannite is a complex oxide, or a mixed oxide, of manganese containing both di- and tri-valent manganese. Its chemical formula can be represented as MnIIMnIII2O4, or more simply noted as MnO·Mn2O3, or Mn3O4, as commonly done for magnetite, the corresponding iron oxide. It belongs to the spinel group and forms tetragonal crystals. Hausmannite is a brown to black metallic mineral with Mohs hardness of 5.5 and a specific gravity of 4.8.

<span class="mw-page-title-main">Triphylite</span> Mineral

Triphylite is a lithium iron(II) phosphate mineral with the chemical formula LiFePO4. It is a member of the triphylite group and forms a complete solid solution series with the lithium manganese(II) phosphate, lithiophilite. Triphylite crystallizes in the orthorhombic crystal system. It rarely forms prismatic crystals and is more frequently found in hypidiomorphic rock. It is bluish- to greenish-gray in color, but upon alteration becomes brown to black.

<span class="mw-page-title-main">Abswurmbachite</span> Copper manganese silicate mineral

Abswurmbachite is a copper manganese silicate mineral ((Cu,Mn2+)Mn3+6O8SiO4). It was first described in 1991 and named after Irmgard Abs-Wurmbach (born 1938), a German mineralogist. It crystallizes in the tetragonal system. Its Mohs scale rating is 6.5 and a specific gravity of 4.96. It has a metallic luster and its color is jet black, with light brown streaks.

<span class="mw-page-title-main">Galaxite</span>

Galaxite, also known as 'mangan-spinel' is an isometric mineral belonging to the spinel group of oxides with the ideal chemical formula Mn2+Al2O4.

<span class="mw-page-title-main">Chloritoid</span>

Chloritoid is a silicate mineral of metamorphic origin. It is an iron magnesium manganese alumino-silicate hydroxide with formula (Fe, Mg, Mn)
2
Al
4
Si
2
O
10
(OH)
4
. It occurs as greenish grey to black platy micaceous crystals and foliated masses. Its Mohs hardness is 6.5, unusually high for a platy mineral, and it has a specific gravity of 3.52 to 3.57. It typically occurs in phyllites, schists and marbles.

Geigerite is a mineral, a complex hydrous manganese arsenate with formula: Mn5(AsO3OH)2(AsO4)2·10H2O. It forms triclinic pinacoidal, vitreous, colorless to red to brown crystals. It has a Mohs hardness of 3 and a specific gravity of 3.05.

<span class="mw-page-title-main">Jacobsite</span>

Jacobsite is a manganese iron oxide mineral. It is in the spinel group and forms a solid solution series with magnetite. The chemical formula is (Mn,Mg)Fe2O4 or with oxidation states and substitutions: (Mn2+,Fe2+,Mg)(Fe3+,Mn3+)2O4.

<span class="mw-page-title-main">Piemontite</span>

Piemontite is a sorosilicate mineral in the monoclinic crystal system with the chemical formula Ca2(Al,Mn3+,Fe3+)3(SiO4)(Si2O7)O(OH). It is a member of the epidote group.

<span class="mw-page-title-main">Greenalite</span> Mineral in the kaolinite-serpentine group

Greenalite is a mineral in the kaolinite-serpentine group with the chemical composition (Fe2+,Fe3+)2-3Si2O5(OH)4. It is a member of the serpentine group.

<span class="mw-page-title-main">Manganosite</span> Rare manganese(II) oxide mineral: MnO

Manganosite is a rare mineral composed of manganese(II) oxide MnO. It was first described in 1817 for an occurrence in the Harz Mountains, Saxony-Anhalt, Germany. It has also been reported from Langban and Nordmark, Sweden and at Franklin Furnace, New Jersey. It also occurs in Japan, Kyrgyzstan and Burkina Faso.

<span class="mw-page-title-main">Aktashite</span> An arsenic sulfosalt mineral

Aktashite is a rare arsenic sulfosalt mineral with formula Cu6Hg3As4S12. It is a copper mercury-bearing sulfosalt and is the only sulfosalt mineral with essential Cu and Hg yet known. It is of hydrothermal origin. It was published without approval of the IMA-CNMNC, but recognized as valid species by the IMA-CNMNC Sulfosalts Subcommittee (2008).

Vasilseverginite is a very rare arsenate-sulfate mineral with formula Cu9O4(AsO4)2(SO4)2. Its structure is of a new type. It possesses a typical feature of many minerals of its type locality, the Tolbachik volcano, namely being a salt with oxide anions. However, it is the first Tolbachik copper oxysalt that is both arsenate and sulfate. Vasilseverginite is monoclinic, with space group P21/n.

Filipstadite is a very rare mineral of the spinel group, with the formula (Mn,Mg)(Sb5+0.5Fe3+0.5)O4. It is isometric, although it was previously thought to be orthorhombic. When compared to a typical spinel, both the octahedral and tetrahedral sites are split due to cation ordering. Filipstadite is chemically close to melanostibite. The mineral comes from Långban, Sweden, a manganese skarn deposit famous for many rare minerals.

Ilirneyite is a rare tellurite mineral with the formula Mg0.5[ZnMn3+(TeO3)3]•4.5H2O. It was discovered at the Sentyabr'skoe deposit (of silver and gold) in the Ilirney Range, Western Chukotka, Russia.

Manganiceladonite is a rare silicate mineral with the formula KMgMn3+Si4O10(OH)2. It is one of many minerals discovered in the Cerchiara mine, La Spezia, Liguria, Italy.

<span class="mw-page-title-main">Cyprine (mineral)</span>

Cyprine is a copper-rich member of the vesuvianite group with the formula Ca19Cu2+(Al10Mg2)Si18O68(OH)10. A similar name is given to a Cu-bearing variety but not Cu-dominant member within the group. Cyprine (sensu stricto) was discovered in the Wessels mine in the vicinity of Hotazel, Kalahari Manganese Field, South Africa.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Mindat
  3. Nishio-Hamane, D., Momma, K., Ohnishi, M., Shimobayashi, N., Miyawaki, R., Tomita, N., and Minakawa, T., 2014. Iyoite, IMA 2013-130. CNMNC Newsletter No. 20, June 2014, page 552; Mineralogical Magazine, 78, 549-558
  4. "Iyoite: Iyoite mineral information and data". Mindat.org. Retrieved 2016-03-05.