Jacob's staff

Last updated
Jacob's staff in the Museo Galileo, Florence Bastone di Giacobbe inv 3167 IF 46850.jpg
Jacob's staff in the Museo Galileo, Florence
Measuring the height of a star with a Jacob's staff Jakobsstab.svg
Measuring the height of a star with a Jacob's staff

The term Jacob's staff is used to refer to several things, also known as cross-staff, a ballastella, a fore-staff, a ballestilla, or a balestilha. In its most basic form, a Jacob's staff is a stick or pole with length markings; most staffs are much more complicated than that, and usually contain a number of measurement and stabilization features. The two most frequent uses are:

Contents

The simplest use of a Jacob's staff is to make qualitative judgements of the height and angle of an object relative to the user of the staff.

In astronomy and navigation

In navigation the instrument is also called a cross-staff and was used to determine angles, for instance the angle between the horizon and Polaris or the sun to determine a vessel's latitude, or the angle between the top and bottom of an object to determine the distance to said object if its height is known, or the height of the object if its distance is known, or the horizontal angle between two visible locations to determine one's point on a map.

The Jacob's staff, when used for astronomical observations, was also referred to as a radius astronomicus. With the demise of the cross-staff, in the modern era the name "Jacob's staff" is applied primarily to the device used to provide support for surveyor's instruments.

Etymology

The origin of the name of the instrument is not certain. Some refer to the Biblical patriarch Jacob, [1] specifically in the Book of Genesis (Gen 32:11). [1] It may also take its name after its resemblance to Orion, referred to by the name of Jacob on some medieval star charts. [2] [3] Another possible source is the Pilgrim's staff, the symbol of St James (Jacobus in Latin). The name cross staff simply comes from its cruciform shape.

History

The original Jacob's staff was developed as a single pole device, in the 14th century, that was used in making astronomical measurements. It was first described by the French-Jewish mathematician Levi ben Gerson [4] [5] of Provence, in his "Book of the Wars of the Lord" (translated in Latin as well as Hebrew). [6] He used a Hebrew name for the staff that translates to "Revealer of Profundities", while the term "Jacob's staff" was used by his Christian contemporaries. [7] Its invention was likely due to fellow French-Jewish astronomer Jacob ben Makir, who also lived in Provence in the same period. [8] Attribution to 15th century Austrian astronomer Georg Purbach [9] is less likely, because Purbach was not born until 1423. (Such attributions may refer to a different instrument with the same name.) Its origins may [10] be traced to the Chaldeans around 400 BCE.

Although it has become quite accepted that ben Gerson first described Jacob's staff, the British Sinologist Joseph Needham theorizes that the Song dynasty Chinese scientist Shen Kuo (10311095), in his Dream Pool Essays of 1088, described a Jacob's staff. [11] Shen was an antiquarian interested in ancient objects; after he unearthed an ancient crossbow-like device from a home's garden in Jiangsu, he realized it had a sight with a graduated scale that could be used to measure the heights of distant mountains, likening it to how mathematicians measure heights by using right-angle triangles. [11] He wrote that when one viewed the whole breadth of a mountain with it, the distance on the instrument was long; when viewing a small part of the mountainside, the distance was short; this, he wrote, was due to the cross piece that had to be pushed further away from the eye, while the graduation started from the further end. Needham does not mention any practical application of this observation. [11]

During the medieval European Renaissance, the Dutch mathematician and surveyor Adriaan Metius developed his own Jacob's staff; Dutch mathematician Gemma Frisius made improvements to this instrument. In the 15th century, the German mathematician Johannes Müller (called Regiomontanus) made the instrument popular in geodesic and astronomical measurements. [12]

Construction

A Jacob's staff, from John Sellers' Practical Navigation (1672) Jacobstaff.svg
A Jacob's staff, from John Sellers' Practical Navigation (1672)

In the original form of the cross-staff, the pole or main staff was marked with graduations for length. The cross-piece (BC in the drawing to the right), also called the transom or transversal, slides up and down on the main staff. On older instruments, the ends of the transom were cut straight across. Newer instruments had brass fittings on the ends, with holes in the brass for observation. (In marine archaeology, these fittings are often the only components of a cross-staff that survive.) [13]

It was common to provide several transoms, each with a different range of angles it would measure; three transoms were common. In later instruments, separate transoms were switched in favour of just one with pegs to indicate the ends. These pegs were mounted in one of several pairs of holes symmetrically located on either side of the transom. This provided the same capability with fewer parts. [10] The transom on Frisius' version had a sliding vane on the transom as an end point. [10]

Usage

The user places one end of the main staff against their cheek, just below the eye. By sighting the horizon at the end of the lower part of the transom (or through the hole in the brass fitting) [B], then adjusting the cross arm on the main arm until the sun is at the other end of the transom [C], the altitude can be determined by reading the position of the cross arm on the scale on the main staff. This value was converted to an angular measurement by looking up the value in a table.

Cross-staff for navigation

Nautical cross-staff dated 1776, on display at Musee national de la Marine, Paris. Cross-staff-MnM 11 NA 5-IMG 5989-black.jpg
Nautical cross-staff dated 1776, on display at Musée national de la Marine, Paris.

The original version was not reported to be used at sea, until the Age of Discoveries. Its use was reported by João de Lisboa in his Treatise on the Nautical Needle of 1514. [14] Johannes Werner suggested the cross-staff be used at sea in 1514 [10] and improved instruments were introduced for use in navigation. John Dee introduced it to England in the 1550s. [1] In the improved versions, the rod was graduated directly in degrees. This variant of the instrument is not correctly termed a Jacob's staff but is a cross-staff. [8]

The cross-staff was difficult to use. In order to get consistent results, the observer had to position the end of the pole precisely against his cheek. He had to observe the horizon and a star in two different directions while not moving the instrument when he shifted his gaze from one to the other. In addition, observations of the sun required the navigator to look directly at the sun. This could be a uncomfortable exercise and made it difficult to obtain an accurate altitude for the sun. Mariners took to mounting smoked-glass to the ends of the transoms to reduce the glare of the sun. [10] [15]

A cross-staff appears on the current Seal of New York City, above the sailor. This seal dates from 1915, though a cross-staff is depicted in 17th century versions. Seal of New York City (BW).svg
A cross-staff appears on the current Seal of New York City, above the sailor. This seal dates from 1915, though a cross-staff is depicted in 17th century versions.

As a navigational tool, this instrument was eventually replaced, first by the backstaff or quadrant, neither of which required the user to stare directly into the sun, and later by the octant and the sextant. Perhaps influenced by the backstaff, some navigators modified the cross-staff to operate more like the former. Vanes were added to the ends of the longest cross-piece and another to the end of the main staff. The instrument was reversed so that the shadow of the upper vane on the cross piece fell on the vane at the end of the staff. The navigator held the instrument so that he would view the horizon lined up with the lower vane and the vane at the end of the staff. By aligning the horizon with the shadow of the sun on the vane at the end of the staff, the elevation of the sun could be determined. [16] This actually increased the accuracy of the instrument, as the navigator no longer had to position the end of the staff precisely on his cheek.

Another variant of the cross-staff was a spiegelboog, invented in 1660 by the Dutchman, Joost van Breen.

Ultimately, the cross-staff could not compete with the backstaff in many countries. In terms of handling, the backstaff was found to be more easy to use. [17] However, it has been proven by several authors that in terms of accuracy, the cross-staff was superior to the backstaff. [18] Backstaves were no longer allowed on board Dutch East India Company vessels as per 1731, with octants not permitted until 1748. [18]

In surveying

In surveying, the term jacob staff refers to a monopod, a single straight rod or staff made of nonferrous material, pointed and metal-clad at the bottom for penetrating the ground. [19] It also has a screw base and occasionally a ball joint on the mount, and is used for supporting a compass, transit, or other instrument. [20]

The term cross-staff may also have a different meaning in the history of surveying. While the astronomical cross-staff was used in surveying for measuring angles, two other devices referred to as a cross-staff were also employed. [21]

  1. Cross-head, cross-sight, surveyor's cross or cross - a drum or box shaped device mounted on a pole. It had two sets of mutually perpendicular sights. This device was used by surveyors to measure offsets. Sophisticated versions had a compass and spirit levels on the top. The French versions were frequently eight-sided rather than round. [21]
  2. Optical square - an improved version of the cross-head, the optical square used two silvered mirrors at 45° to each other. This permitted the surveyor to see along both axes of the instrument at once. [22]

In the past, many surveyor's instruments were used on a Jacob's staff. These include:

Some devices, such as the modern optical targets for laser-based surveying, are still in common use on a Jacob's staff.

In geology

In geology, the Jacob's staff is mainly used to measure stratigraphic thicknesses in the field, especially when bedding is not visible or unclear (e.g., covered outcrop) and when due to the configuration of an outcrop, the apparent and real thicknesses of beds diverge therefore making the use of a tape measure difficult. There is a certain level of error to be expected when using this tool, due to the lack of an exact reference mean for measuring stratigraphic thickness. High-precision designs include a laser able to slide vertically along the staff and to rotate on a plane parallel to bedding. [23]

See also

Related Research Articles

<span class="mw-page-title-main">Navigation</span> Process of monitoring and controlling the movement of a craft or vehicle from one place to another

Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another. The field of navigation includes four general categories: land navigation, marine navigation, aeronautic navigation, and space navigation.

<span class="mw-page-title-main">Sextant</span> Tool for angle measurement

A sextant is a doubly reflecting navigation instrument that measures the angular distance between two visible objects. The primary use of a sextant is to measure the angle between an astronomical object and the horizon for the purposes of celestial navigation.

<span class="mw-page-title-main">Celestial navigation</span> Navigation using astronomical objects to determine position

Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface of the Earth without relying solely on estimated positional calculations, commonly known as dead reckoning. Celestial navigation is performed without using satellite navigation or other similar modern electronic or digital positioning means.

<span class="mw-page-title-main">Kamal (navigation)</span> Celestial navigation device that determines latitude

A kamal, often called simply khashaba, is a celestial navigation device that determines latitude. The invention of the kamal allowed for the earliest known latitude sailing, and was thus the earliest step towards the use of quantitative methods in navigation. It originated with Arab navigators of the late 9th century, and was employed in the Indian Ocean from the 10th century. It was adopted by Indian navigators soon after, and then adopted by Chinese navigators some time before the 16th century.

<span class="mw-page-title-main">Almucantar</span> Circle on the celestial sphere parallel to the horizon

An almucantar is a circle on the celestial sphere parallel to the horizon. Two stars that lie on the same almucantar have the same altitude.

The backstaff is a navigational instrument that was used to measure the altitude of a celestial body, in particular the Sun or Moon. When observing the Sun, users kept the Sun to their back and observed the shadow cast by the upper vane on a horizon vane. It was invented by the English navigator John Davis, who described it in his book Seaman's Secrets in 1594.

Navigational instruments are instruments used by nautical navigators and pilots as tools of their trade. The purpose of navigation is to ascertain the present position and to determine the speed, direction, etc. to arrive at the port or point of destination.

<span class="mw-page-title-main">Octant (instrument)</span> Measuring instrument used primarily in navigation; type of reflecting instrument

The octant, also called a reflecting quadrant, is a reflecting instrument used in navigation.

In astronomical navigation, the intercept method, also known as Marcq St. Hilaire method, is a method of calculating an observer's position on Earth (geopositioning). It was originally called the azimuth intercept method because the process involves drawing a line which intercepts the azimuth line. This name was shortened to intercept method and the intercept distance was shortened to 'intercept'.

<span class="mw-page-title-main">Longitude by chronometer</span>

Longitude by chronometer is a method, in navigation, of determining longitude using a marine chronometer, which was developed by John Harrison during the first half of the eighteenth century. It is an astronomical method of calculating the longitude at which a position line, drawn from a sight by sextant of any celestial body, crosses the observer's assumed latitude. In order to calculate the position line, the time of the sight must be known so that the celestial position i.e. the Greenwich Hour Angle and Declination, of the observed celestial body is known. All that can be derived from a single sight is a single position line, which can be achieved at any time during daylight when both the sea horizon and the sun are visible. To achieve a fix, more than one celestial body and the sea horizon must be visible. This is usually only possible at dawn and dusk.

The navigational triangle or PZX triangle is a spherical triangle used in astronavigation to determine the observer's position on the globe. It is composed of three reference points on the celestial sphere:

<span class="mw-page-title-main">Astrodome (aeronautics)</span> Window dome for astronomical navigation on airplanes

An astrodome is a hemispherical transparent dome that was installed in the cabin roof of an aircraft. Such a dome would allow a trained navigator to perform astronavigation and thereby guide the aircraft at night without the aid of land-based visual references.

<span class="mw-page-title-main">Mariner's astrolabe</span> Nautical navigational instrument

The mariner's astrolabe, also called sea astrolabe, was an inclinometer used to determine the latitude of a ship at sea by measuring the sun's noon altitude (declination) or the meridian altitude of a star of known declination. Not an astrolabe proper, the mariner's astrolabe was rather a graduated circle with an alidade used to measure vertical angles. They were designed to allow for their use on boats in rough water and/or in heavy winds, which astrolabes are ill-equipped to handle. It was invented by the Portuguese people, a nation known for its maritime prowess that dominated the sea for multiple centuries. In the sixteenth century, the instrument was also called a ring.

In astronomy, sextants are devices depicting a sixth of a circle, used primarily for measuring the position of stars. There are two types of astronomical sextants, mural instruments and frame-based instruments.

<span class="mw-page-title-main">Quadrant (instrument)</span> Navigation instrument

A quadrant is an instrument used to measure angles up to 90°. Different versions of this instrument could be used to calculate various readings, such as longitude, latitude, and time of day. Its earliest recorded usage was in ancient India in Rigvedic times by Rishi Atri to observe a solar eclipse. It was then proposed by Ptolemy as a better kind of astrolabe. Several different variations of the instrument were later produced by medieval Muslim astronomers. Mural quadrants were important astronomical instruments in 18th-century European observatories, establishing a use for positional astronomy.

Reflecting instruments are those that use mirrors to enhance their ability to make measurements. In particular, the use of mirrors permits one to observe two objects simultaneously while measuring the angular distance between the objects. While reflecting instruments are used in many professions, they are primarily associated with celestial navigation as the need to solve navigation problems, in particular the problem of the longitude, was the primary motivation in their development.

<span class="mw-page-title-main">Elton's quadrant</span>

An Elton's quadrant is a derivative of the Davis quadrant. It adds an index arm and artificial horizon to the instrument, and was invented by English sea captain John Elton, who patented his design in 1728 and published details of the instrument in the Philosophical Transactions of the Royal Society in 1732.

<span class="mw-page-title-main">Bris sextant</span> Celestial navigation device

The Bris sextant is not a sextant proper, but is a small angle-measuring device that can be used for navigation. The Bris is, however, a true reflecting instrument which derives its high accuracy from the same principle of double reflection which is fundamental to the octant, the true sextant, and other reflecting instruments. It differs from other sextants primarily in being a fixed angle sextant, capable of measuring a few specific angles.

<span class="mw-page-title-main">Azimuth compass</span> Nautical instrument

An azimuth compass is a nautical instrument used to measure the magnetic azimuth, the angle of the arc on the horizon between the direction of the Sun or some other celestial object and the magnetic north. This can be compared to the true azimuth obtained by astronomical observation to determine the magnetic declination, the amount by which the reading of a ship's compass must be adjusted to obtain an accurate reading. Azimuth compasses were important in the period before development of the reliable chronometers needed to determine a vessel's exact position from astronomical observations.

The Greeks studied the results of the measurements of latitude by the explorer Pytheas who voyaged to Britain and beyond, as far as the Arctic Circle, in 325 BC. They used several methods to measure latitude, including the height of the Sun above the horizon at midday, measured using a gnōmōn ; the length of the day at the summer solstice, and the elevation of the Sun at winter solstice.

References

  1. 1 2 3 Turner, Gerard L'E. Antique Scientific Instruments, Blandford Press Ltd. 1980 ISBN   0-7137-1068-3
  2. Harriet Wynter and Anthony Turner, Scientific Instruments, Studio Vista, 1975, ISBN   0-289-70403-0
  3. Orion Archived 2007-06-12 at the Wayback Machine This article indicates the three belt stars are sometimes called Jacob's Ladder or Jacob's Stick
  4. "The Mathematics of Levi ben Gershon, the Ralbag"
  5. David G. Krehbiel "Jacob's Staff", Backsights, Surveyor's Historical Society
  6. Stern, Dr. David. "The Cross Staff" . Retrieved 11 April 2018.
  7. Goldstein, Bernard (2011). "Levin ben Gerson and the Cross Staff Revisted". Aleph. 11 (2): 365–385. doi:10.2979/aleph.11.2.365. JSTOR   10.2979/aleph.11.2.365.pdf?refreqid=excelsior:a08ab1beb338a72c69a372d21cc1f553. S2CID   142638690.
  8. 1 2 The Oxford Companion to Ships and the Sea, Peter Kemp ed., 1976 ISBN   0-586-08308-1
  9. ""Important Astronomers, their Instruments and Discoveries"". Archived from the original on 2009-01-23. Retrieved 2006-10-31.
  10. 1 2 3 4 5 May, William Edward, A History of Marine Navigation, G. T. Foulis & Co. Ltd., Henley-on-Thames, Oxfordshire, 1973, ISBN   0-85429-143-1
  11. 1 2 3 Needham, Joseph. (1986). Science and Civilization in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth. Taipei: Caves Books Ltd. Pages 573575.
  12. Ralf Kern: Wissenschaftliche Instrumente in ihrer Zeit. Band 1: Vom Astrolab zum mathematischen Besteck. Cologne, 2010. p. 214.
  13. Swanick, Lois Ann. An Analysis Of Navigational Instruments In The Age Of Exploration: 15th Century To Mid-17th Century, MA Thesis, Texas A&M University, December, 2005
  14. Goldstein, B. R. (2011). "Levi ben Gerson and the Cross Staff Revisited" (PDF). Aleph. 11 (2): 365–383. doi:10.2979/aleph.11.2.365. S2CID   142638690.
  15. Bourne, William, A Regiment for the Sea, 1574
  16. Daumas, Maurice, Scientific Instruments of the Seventeenth and Eighteenth Centuries and Their Makers, Portman Books, London 1989 ISBN   978-0-7134-0727-3
  17. Nicolàs de Hilster's web site Archived 2014-03-11 at the Wayback Machine Tests performed on various instruments are described. In addition, de Hilster describes the handling characteristics found by the testers on the Nav List mailing list.
  18. 1 2 Bruyns, Willem Mörzer, The Cross-staff, History and development of a navigational instrument, Nederlandsch Historisch Sheepvaart Museum, Amsterdam, and Walburg Instituut, Zutphen, Netherlands, 1994 ISBN   90-6011-907-X
  19. Rutstrum, The Wilderness Route Finder, University of Minnesota Press (2000), ISBN   0-8166-3661-3, pp. 47-55, 64-72
  20. Rutstrum, pp. 47-55, 64-72
  21. 1 2 Turner, Gerard L'E., Nineteenth Century Scientific Instruments, Sotheby Publications, 1983, ISBN   0-85667-170-3
  22. Rankine, William J. M., A Manual of Civil Engineering, Charles Griffin & Company (1926), p.21
  23. Patacci, M. (2016), A high-precision Jacob's staff with improved spatial accuracy and laser sighting capability Open Repository DOI Link

Further reading